D•Non-divisible 2-3 Power Sums

Every positive integer \boldsymbol{N} can be written in at least one way as a sum of terms of the form (2a)(3b) where no term in the sum exactly divides any other term in the sum. For example:

```
1 = (20)(30)
7 = (22) (30) + (20)(31)
31 = (24)(30) + (20)(32) + (21)(31) = (22) + (33)
```

Note from the example of 31 that the representation is not unique.
Write a program which takes as input a positive integer \boldsymbol{N} and outputs a representation of \boldsymbol{N} as a sum of terms of the form (2a)(3b).

Input

The first line of input contains a single integer $\mathbf{C},(1 \leq \mathbf{C} \leq 1000)$ which is the number of datasets that follow.

Each dataset consists of a single line of input containing a single integer $\mathbf{N},\left(1 \leq \mathbf{N}<2_{31}\right)$, which is the number to be represented as a sum of terms of the form (2a)(3b).

Output

For each dataset, the output will be a single line consisting of: The dataset number, a single space, the number of terms in your sum as a decimal integer followed by a single space followed by representations of the terms in the form [<2 exponent>, <3 exponent>] with terms separated by a single space. <2 exponent $>$ is the power of 2 in the term and <3 exponent $>$ is the power of 3 in the term.

Sample Input	Sample Output									
6		1	[0,0]							
1		2	$[2,0]$	[0,1]						
7		3	$[4,0]$	[0,2] [, 1]					
31		4	$[5,5]$							
7776		51	[0,12]							
$\begin{aligned} & 531441 \\ & 123456789 \end{aligned}$		68	[3,13]	[4,12]	$[2,15]$	$[7,8]$	$[9,6]$	[0,16]	$[10,5]$	[15,2]

