B•Push Button Lock

The Frobozz Magic Lock Company is in the business of manufacturing push button style combination door locks. A push button door lock consists of a number of push buttons B, $(1 \leq B \leq 11)$, labeled " 1 " through " B ". The lock is opened by pressing the correct sequence of button combinations and then turning the doorknob. If the sequence of presses is correct, the door magically opens.

A combination consists of 1 or more buttons being pressed simultaneously. A sequence consists of a series of combinations. A sequence must have at least one combination. Once a button has been used in a combination, it may not be used again in the same sequence. In addition, it is not necessary to use all the buttons in a sequence. For example, for $B=8$:

$$
(1-2-3)(4)(7-8)
$$

is a valid sequence with 3 combinations (1-2-3), (4), and (7-8). Note that buttons 5 and 6 are not used in this sequence.
is not a valid sequence, since button 2 appears in 2 combinations (1-2-3) and (2-4).
The CEO of Frobozz, J. Pierpont Flathead, wants you to write a program that determines the number of valid sequences possible for given values of \mathbf{B}. The program must be able to process a list of lock orders (datasets) from customers and generate a report showing the order number, the value of \mathbf{B}, and the number of valid sequences possible. This list will always contain at least one dataset, but no more than 100 datasets.

Input

The first line of input contains a single integer $\mathbf{N},(1 \leq \mathbf{N} \leq 100)$, representing the number of datasets that follow. Each dataset consists of a single line of data containing a single integer \mathbf{B}, which is the number of buttons for the lock.

Output

For each dataset, display the dataset number, a blank, the value \mathbf{B}, a blank, and the number of valid sequences.

Sample Input	Sample Output
3	1
3	3
2	25
2	4
149	
3	3
3	25

