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Copyright

Copyright 2004-2009 The Apache Software Foundation

Copyright 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California
95054, U.S.A.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.

Related information

License

http://www.apache.org/licenses/LICENSE-2.0
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License

The Apache License, Version 2.0

                               Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use,
      reproduction, and distribution as defined by Sections 1 through
      9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized
      by the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under
      common control with that entity. For the purposes of this
      definition, "control" means (i) the power, direct or indirect,
      to cause the direction or management of such entity, whether by
      contract or otherwise, or (ii) ownership of fifty percent (50%)
      or more of the outstanding shares, or (iii) beneficial ownership
      of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making
      modifications, including but not limited to software source code,
      documentation source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or
      Object form, that is based on (or derived from) the Work and
      for which the editorial revisions, annotations, elaborations,
      or other modifications represent, as a whole, an original work
      of authorship.  For the purposes of this License, Derivative
      Works shall not include works that remain separable from, or
      merely link (or bind by name) to the interfaces of, the Work
      and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or
      additions to that Work or Derivative Works thereof, that is
      intentionally submitted to Licensor for inclusion in the Work
      by the copyright owner or by an individual or Legal Entity
      authorized to submit on behalf of the copyright owner. For the
      purposes of this definition,
      "submitted" means any form of electronic, verbal, or written
      communication sent to the Licensor or its representatives,
      including but not limited to communication on electronic mailing
      lists, source code control systems, and issue tracking systems
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      that are managed by, or on behalf of, the Licensor for the
      purpose of discussing and improving the Work, but excluding
      communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a
      Contribution."

      "Contributor" shall mean Licensor and any individual or Legal
      Entity on behalf of whom a Contribution has been received by
      Licensor and subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions
      of this License, each Contributor hereby grants to You a
      perpetual, worldwide, non-exclusive, no-charge, royalty-free,
      irrevocable copyright license to reproduce, prepare Derivative
      Works of, publicly display, publicly perform, sublicense, and
      distribute the Work and such Derivative Works in Source or
      Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have
      made, use, offer to sell, sell, import, and otherwise transfer
      the Work, where such license applies only to those patent claims
      licensable by such Contributor that are necessarily infringed by
      their Contribution(s) alone or by combination of their
      Contribution(s) with the Work to which such Contribution(s) was
      submitted. If You institute patent litigation against any entity
      (including a cross-claim or counterclaim in a lawsuit) alleging
      that the Work or a Contribution incorporated within the Work
      constitutes direct or contributory patent infringement, then any
      patent licenses granted to You under this License for that Work
      shall terminate as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute
          must include a readable copy of the attribution notices
          contained within such NOTICE file, excluding those notices
          that do not pertain to any part of the Derivative Works, in
          at least one of the following places: within a NOTICE text
          file distributed as part of the Derivative Works; within the
          Source form or documentation, if provided along with the
          Derivative Works; or, within a display generated by the
          Derivative Works, if and wherever such third-party notices
          normally appear. The contents of the NOTICE file are for
          informational purposes only and do not modify the License.
          You may add Your own attribution notices within Derivative
          Works that You distribute, alongside or as an addendum to
          the NOTICE text from the Work, provided that such additional
          attribution notices cannot be construed as modifying the
          License.

      You may add Your own copyright statement to Your modifications
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      and may provide additional or different license terms and
      conditions for use, reproduction, or distribution of Your
      modifications, or for any such Derivative Works as a whole,
      provided Your use, reproduction, and distribution of the Work
      otherwise complies with the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state
      otherwise, any Contribution intentionally submitted for
      inclusion in the Work by You to the Licensor shall be under the
      terms and conditions of this License, without any additional
      terms or conditions.  Notwithstanding the above, nothing herein
      shall supersede or modify the terms of any separate license
      agreement you may have executed with Licensor regarding such
      Contributions.

   6. Trademarks. This License does not grant permission to use the
      trade names, trademarks, service marks, or product names of the
      Licensor, except as required for reasonable and customary use
      in describing the origin of the Work and reproducing the content
      of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or
      conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
      FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for
      determining the appropriateness of using or redistributing the
      Work and assume any risks associated with Your exercise of
      permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and
      grossly negligent acts) or agreed to in writing, shall any
      Contributor be liable to You for damages, including any direct,
      indirect, special, incidental, or consequential damages of any
      character arising as a result of this License or out of the use
      or inability to use the Work (including but not limited to
      damages for loss of goodwill, work stoppage, computer failure or
      malfunction, or any and all other commercial damages or losses),
      even if such Contributor has been advised of the possibility of
      such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by
      reason of your accepting any such warranty or additional
      liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "[]"
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate
      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.
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   Copyright [yyyy] [name of copyright owner]

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
   implied.  See the License for the specific language governing
   permissions and limitations under the License.
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Relationship between Java(TM) DB and Derby

Java(TM) DB is a relational database management system that is based on the Java
programming language and SQL. Java DB is a commercial release of the Apache
Software Foundation's (ASF) open source relational database project. The Apache
project is called Derby.

The Java DB product includes Derby without any modification whatsoever to the
underlying source code.

Technical support is available for purchase for the Java DB product through Sun.

Because Java DB and Derby have the same functionality, the Java DB documentation
refers to the core functionality as Derby.

Java DB Version 10.5 is based on the Derby Version 10.5 release. References to "Derby"
in the Java DB documentation refer to the Version 10.5 release of Apache Derby.



Tuning Java DB

10

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Java DB.

Purpose of this guide
This guide, Tuning Java DB, explains how to tune systems, databases, specific tables
and indexes, and queries for performance. This guide also provides an in-depth study of
query optimization and performance issues.

Audience
This book is a reference for Derby users, typically application developers. Derby users
who are not familiar with the SQL standard or the Java programming language will
benefit from consulting books on those topics.

Derby users who want a how-to approach to working with Derby or an introduction to
Derby concepts should read the Java DB Developer's Guide. This book is for users who
want to optimize and tune their application's performance.

How this guide is organized
This guide includes the following sections:

• Performance tips and tricks

Quick tips on how to improve the performance of Derby applications.
• Tuning databases and applications

A more in-depth discussion of how to improve the performance of Derby
applications.

• DML statements and performance

An in-depth study of how Derby executes queries, how the optimizer works, and
how to tune query execution.

• Selectivity and cardinality statistics
• Internal language transformations

Reference on how Derby internally transforms some SQL statements for
performance reasons. Not of interest to the general user.
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Performance tips and tricks

This chapter lists tips for improving the performance of your Derby application. For a
more in-depth discussion of performance, see Tuning databases and applications.

The tips
• Use prepared statements with substitution parameters to save on costly compilation

time. Prepared statements using substitution parameters significantly improves
performance in applications using standard statements.

• Create indexes, and make sure they are being used. Indexes speed up queries
dramatically if the table is much larger than the number of rows retrieved.

• Increase the size of the data page cache and prime all the caches.
• Tune the size of database pages. Using large database pages has provided a

performance improvement of up to 50%. There are also other storage parameters
worth tweaking. If you use large database pages, increase the amount of memory
available to Derby.

• Avoid expensive queries.
• Use the appropriate getXXX and setXXX methods for the type.
• Tune database booting/class loading. System startup time can be improved by

reducing the number of databases in the system directory.
• Avoid inserts in autocommit mode if possible. Speed up insert performance.
• Customize the optimizer methods for table functions. Force more efficient join

orders for queries which use table functions.

These tips might solve your particular performance problem. Be sure to visit the Support
section of Derby's Web site for up-to-date performance tips and tricks.

Use prepared statements with substitution parameters

In Derby, as with most relational database management systems, performing an SQL
request has two steps: compiling the request and executing it. When you use prepared
statements (java.sql.PreparedStatement) instead of statements (java.sql.Statement) you
can help Derby avoid unnecessary compilation, which saves time. In general, any query
that you will use more than once should be a prepared statement.

For more information, see Avoiding compiling SQL statements.

Using prepared statements can result in significant performance improvement, depending
on the complexity of the query. More complex queries show greater benefit from being
prepared.

Create indexes, and make sure they are being used

By creating indexes on columns by which you often search a table, you can reduce the
number of rows that Derby has to scan, thus improving performance. Depending on the
size of the table and the number of rows returned, the improvement can be dramatic.
Indexes work best when the number of rows returned from the query is a fraction of the
number of rows in the table.

There are some trade-offs in using indexes: indexes speed up searches but slow down
inserts and updates. As a general rule, every table should have at least a primary key
constraint.

See Always create indexes for more information.
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Increase the size of the data page cache

You can increase the size of a database's data page cache, which consists of the data
pages kept in memory. When Derby can access a database page from the cache instead
of reading it from disk, it can return data much more quickly.

The default size of the data page cache is 1000 pages. In a multi-user environment,
or in an environment where the user accesses a lot of data, increase the size of the
cache. You configure its size with the derby.storage.pageCacheSize property. For more
information about how to set this property and how to estimate memory use, see the
"Derby properties" section of the Java DB Reference Manual.

Note:  Derby can run even with a small amount of memory and even with a small data
page cache, although it might perform poorly. Increasing the amount of memory available
to Derby and increasing the size of the data page cache improve performance.

In addition, you might want to prime all the caches in the background to make queries run
faster when the user gets around to running them.

These caches include:
• The page (user data) cache (described above)

Prime this cache by selecting from much-used tables that are expected to fit into the
data page cache.

• The data dictionary cache

The cache that holds information stored in the system tables. You can prime this
cache with a query that selects from commonly used user tables.

• The statement cache

The cache that holds database-specific Statements (including
PreparedStatements). You can prime this cache by preparing common queries
ahead of time in a separate thread.

Tune the size of database pages
Stick with 4K as the page size (the default, and the size operating systems use) unless:

• You are storing large objects.
• You have very large tables (over 10,000 rows).

For very large tables, large pages reduces the number of I/Os required.
• For read-only applications, use a large page size (for example, 32K) with a

pageReservedSpace of 0.

You might need to experiment with page size to find out what works best for your
application and database.

Performance trade-offs of large pages
Using large database pages benefits database performance, notably decreasing I/O
time. Derby automatically tunes for the database page size. If you have long columns,
the default page size for the table is set to 32768 bytes. Otherwise, the default is 4096
bytes. You can change the default database page size with the derby.storage.pageSize
property, described in the "Derby properties" section of the Java DB Reference Manual.
For example:

derby.storage.pageSize=8192

Note:  Large database pages require more memory.



Tuning Java DB

13

If row size is large, generally page size should be correspondingly large. If row size is
small, page size should be small. Another rough guideline is to try to have at least 10
average-sized rows per page (up to 32K).

Use a larger page size for tables with large columns or rows. Maximum page size
allowed is 32k.

However, some applications involve rows whose size will vary considerably from user to
user. In that situation, it is hard to predict what effect page size will have on performance.

If a table contains one large column along with several small columns, put the large
column at the end of the row, so that commonly used columns will not be moved to
overflow pages. Do not index large columns.

Large page size for indexes improves performance considerably.

When large page size does not improve performance:
• Selective Queries

If your application's queries are very selective and use an index, large page size
does not provide much benefit and potentially degrades performance because a
larger page takes longer to read.

When large page size is not desirable:
• Limited memory

Large database pages reduce I/O time because Derby can access more data with
fewer I/Os. However, large pages require more memory. Derby allocates a bulk
number of database pages in its page cache by default. If the page size is large, the
system might run out of memory.

Here's a rough guideline: If the system is running Windows 95 and has more than
32 MB (or Windows NT and has more than 64 MB), it is probably beneficial to use
8K rather than 4K as the default page size.

Use the -mx flag as an optional parameter to the JVM to give the JVM more
memory upon startup.

For example:

java -mx64 myApp
• Limited disk space

If you cannot afford the overhead of the minimum two pages per table, keep your
page sizes small.

Avoid expensive queries
Some queries can, and should, be avoided. Two examples:

SELECT DISTINCT nonIndexedCol FROM HugeTable

SELECT * FROM HugeTable ORDER BY nonIndexedColumn

See Prevent the user from issuing expensive queries.

Use the appropriate getXXX and setXXX methods for the type

For performance reasons, use the recommended getXXX method when retrieving values,
and use the recommended setXXX method when setting values for parameters.

JDBC is permissive. It lets you use java.sql.ResultSet.getFloat to retrieve an int,
java.sql.ResultSet.getObject to retrieve any type, and so on. (java.sql.ResultSet and
java.sql.CallableStatement provide getXXX methods, and java .sql.PreparedStatement
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and java.sql.CallableStatement provide setXXX methods.) This permissiveness is
convenient but expensive in terms of performance.

The following table shows the recommended getXXX methods for given java.sql (JDBC)
types, and their corresponding SQL types.
Table 1. Mapping of java.sql.Types to SQL types

Recommended
getXXX Method

java.sql.Types SQL types

getLong BIGINT BIGINT

getBytes BINARY CHAR FOR BIT DATA

getBlob BLOB BLOB

getString CHAR CHAR

getClob CLOB CLOB

getDate DATE DATE

getBigDecimal DECIMAL DECIMAL

getDouble DOUBLE DOUBLE PRECISION

getDouble FLOAT DOUBLE PRECISION

getInt INTEGER INTEGER

getBinaryStream LONGVARBINARY LONG VARCHAR FOR BIT
DATA

getAsciiStream,
getUnicodeStream

LONGVARCHAR LONG VARCHAR

getBigDecimal NUMERIC DECIMAL

getFloat REAL REAL

getShort SMALLINT SMALLINT

getTime TIME TIME

getTimestamp TIMESTAMP TIMESTAMP

getBytes VARBINARY VARCHAR FOR BIT DATA

getString VARCHAR VARCHAR

None supported. You must
use XMLSERIALIZE and then
the corresponding getXXX
method.

SQLXML XML

Tune database booting/class loading

By default, Derby does not boot databases (and some core Derby classes) in the system
at Derby startup but only at connection time. For multi-user systems, you might want to
reduce connection time by booting one or all databases at startup instead.

For embedded systems, you might want to boot the database in a separate thread (either
as part of the startup, or in a connection request).

For more information, see Shielding users from Derby class-loading events.
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Avoid inserts in autocommit mode if possible
Inserts can be painfully slow in autocommit mode because each commit involves an
update of the log on the disk for each INSERT statement. The commit will not return until
a physical disk write is executed. To speed things up:

• Run in autocommit false mode, execute a number of inserts in one transaction, and
then explicitly issue a commit.

• If your application allows an initial load into the table, you can use the import
procedures to insert data into a table. Derby will not log the individual inserts when
loading into an empty table using these interfaces. See the Java DB Tools and
Utilities Guide Guide for more information on the import procedures.

Customize the optimizer methods for table functions

The optimizer makes hard-coded guesses about how to calculate the cost of a
user-written Derby-style table function. For this reason, the optimizer may place a
table function in an inefficient position in the join order. You can give the optimizer
more information so that it makes better choices. See "Programming Derby-style table
functions" in the Java DB Developer's Guide.

More tips

Shut down the system properly

Derby features crash recovery that restores the state of committed transactions in the
event that the database exits unexpectedly, for example during a power failure. The
recovery processing happens the next time the database is started after the unexpected
exit. Your application can reduce the amount of work that the database has to do to start
up the next time by shutting it down in an orderly fashion. See "Shutting Down Derby or
an Individual Database" in the Java DB Developer's Guide.

The Derby utilities all perform an "orderly" shutdown.

Put Derby first in your classpath

The structure of your classpath can affect Derby startup time and the time required to
load a particular class.

The classpath is searched linearly, so locate Derby's libraries at the beginning of the
classpath so that they are found first. If the classpath first points to a directory that
contains multiple files, booting Derby can be very slow.
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Tuning databases and applications

Performance tips and tricks, provided some quick tips for improving performance.
This chapter, while covering some of the same ground, provides more background on
the basic design issues for improving performance. It also explains how to work with
RunTimeStatistics.

Application and database design issues
Things that you can do to improve the performance of Derby applications fall into three
categories.

Avoiding table scans of large tables

Derby is fast and efficient, but when tables are huge, scanning tables might take longer
than a user would expect. It's even worse if you then ask Derby to sort this data.

Things that you can do to avoid table scans fall into two categories.

Always create indexes

Have you ever thought what it would be like to look up a phone number in the phone
book of a major metropolitan city if the book were not indexed by name? For example, to
look up the phone number for John Jones, you could not go straight to the J page. You
would have to read the entire book. That is what a table scan is like. Derby has to read
the entire table to retrieve what you are looking for unless you create useful indexes on
your table.

Create useful indexes:

Indexes are useful when a query contains a WHERE clause.

Without a WHERE clause, Derby is supposed to return all the data in the table, and so a
table scan is the correct (if not desirable) behavior. (More about that in Prevent the user
from issuing expensive queries.)

Derby creates indexes on tables in the following situations:
• When you define a primary key, unique, or foreign key constraint on a table. See

"CONSTRAINT clause" in the Java DB Reference Manual for more information.
• When you explicitly create an index on a table with a CREATE INDEX statement.

For an index to be useful for a particular statement, one of the columns in the statement's
WHERE clause must be the first column in the index's key.
Note:  For a complete discussion of how indexes work and when they are useful, see
What is an index? and Index use and access paths.

Indexes provide some other benefits as well:
• If all the data requested are in the index, Derby does not have to go to the table at

all. (See Covering indexes.)
• For operations that require a sort (ORDER BY), if Derby uses the index to retrieve

the data, it does not have to perform a separate sorting step for some of these
operations in some situations. (See About the optimizer's choice of sort avoidance.)

Note:  Derby does not support indexing on columns with data types like BLOB, CLOB,
and XML.
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Make sure indexes are being used, and rebuild them:

If an index is useful for a query, Derby is probably using it. However, you need to make
sure. Analyze the way Derby is executing your application's queries. See Analyzing
statement execution for information on how to do this.

In addition, over time, index pages fragment. Rebuilding indexes improves performance
significantly in these situations. To rebuild an index, drop it and then re-create it.

Think about index order:

Derby allows you to create index columns in descending order in addition to creating
them in ascending order, the default. Descending indexes provide performance benefits
for the following kinds of queries that require sorting data in descending order.

To ensure performance benefits, verify that the descending index is being used. See
Analyzing statement execution for information on how to do this.

Think about join order:
For some queries, join order can make the difference between a table scan (expensive)
and an index scan (cheap). Here's an example:

select ht.hotel_id, ha.stay_date, ht.depart_time
from hotels ht, Hotelavailability ha
where ht.hotel_id = ha.hotel_id and 
ht.room_number = ha.room_number
and ht.bed_type = 'KING'
and ht.smoking_room = 'NO'
order by ha.stay_date

If Derby chooses Hotels as the outer table, it can use the index on Hotels to retrieve
qualifying rows. Then it need only look up data in HotelAvailability three times, once for
each qualifying row. And to retrieve the appropriate rows from HotelAvailability, it can use
an index for HotelAvailability's hotel_id column instead of scanning the entire table.

If Derby chooses the other order, with HotelAvailability as the outer table, it will have
to probe the Hotels table for every row, not just three rows, because there are no
qualifications on the HotelAvailability table.

For more information about join order, see Joins and performance.

Derby usually chooses a good join order. However, as with index use, you should make
sure. Analyze the way Derby is executing your application's queries. See Analyzing
statement execution for information on how to do this.

Decide whether a descending index would be useful:
Derby allows you to create an index that uses the descending order for a column. Such
indexes improve the performance of queries that order results in descending order or that
search for the minimum or maximum value of an indexed column. For example, both of
the following queries could benefit from indexes that use descending ordering:

-- would benefit from an index like this:
-- CREATE INDEX c_id_desc ON Citites(city_id DESC)
SELECT * FROM Cities ORDER BY city_id DESC
-- would benefit from an index like this:
-- CREATE INDEX f_miles_desc on Flights(miles DESC)
SELECT MAX(miles) FROM Flight
-- would benefit from an index like this:
-- CREATE INDEX arrival_time_desc ON Flights(dest_airport, arrive_time
 DESC)
SELECT * FROM Flights WHERE dest_airport = 'LAX'
ORDER BY ARRIVAL DESC
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Prevent the user from issuing expensive queries
Some applications have complete control over the queries that they issue; the queries
are built into the applications. Other applications allow users to construct queries by
filling in fields on a form. Any time you let users construct ad-hoc queries, you risk the
possibility that the query a user constructs will be one like the following:

SELECT * FROM ExtremelyHugeTable
ORDER BY unIndexedColumn

This statement has no WHERE clause. It will require a full table scan. To make matters
worse, Derby will then have to order the data. Most likely, the user does not want to
browse through all 100,000 rows, and does not care whether the rows are all in order.

Do everything you can to avoid table scans and sorting of large results (such as table
scans).

Some things you can do to disallow such runaway queries:
• Use client-side checking to make sure some minimal fields are always filled in.

Eliminate or disallow queries that cannot use indexes and are not optimizable. In
other words, force an optimizable WHERE clause by making sure that the columns
on which an index is built are included in the WHERE clause of the query. Reduce
or disallow DISTINCT clauses (which often require sorting) on large tables.

• For queries with large results, do not let the database do the ordering. Retrieve
data in chunks (provide a Next button to allow the user to retrieve the next chunk, if
desired), and order the data in the application.

• Do not use SELECT DISTINCT to populate lists; instead, maintain a separate table
of the unique items.

Avoiding compiling SQL statements

When you submit an SQL statement to Derby, Derby compiles and then executes
the statement. Compilation is a time-consuming process that involves several steps,
including optimization, the stage in which Derby makes its statement execution plan. A
statement execution plan includes whether to use an index, the join order, and so on.

Unless there are significant changes in the amount of data in a table or new or deleted
indexes, Derby will probably come up with the same statement execution plan for the
same statement if you submit it more than once. This means that the same statements
should share the same plan, and Derby should not recompile them. Derby allows you to
ensure this in the following ways (in order of importance):

Using the statement cache
The statement cache is enabled by default. You can use it to avoid extra compilation
overhead:

• Your application can use PreparedStatements instead of Statements.

PreparedStatements are JDBC objects that you prepare (compile) once and
execute multiple times. See the figure below. If your application executes
statements that are almost but not exactly alike, use PreparedStatements, which
can contain dynamic or IN parameters. Instead of using the literals for changing
parameters, use question marks (?) as placeholders for such parameters. Provide
the values when you execute the statement.

Derby supports the ParameterMetaData interface, new in JDBC 3.0. This interface
describes the number, type, and properties of prepared statement parameters. See the
Java DB Developer's Guide for more information.

Figure 1. A connection need only compile a PreparedStatement once
Subsequent executions can use the same statement execution plan even if the
parameter values are different. (PreparedStatements are not shared across connections.)
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• Even if your statement uses Statements instead of PreparedStatements, Derby can
reuse the statement execution plan for the statements from the statement cache.
Statements from any connection can share the same statement execution plan,
avoiding compilation, by using the single-statement cache. The statement cache
maintains statement plans across connections. It does not, however, maintain them
across reboots. See the figure below.

When, in the same database, an application submits an SQL Statement that exactly
matches one already in the cache, Derby grabs the statement from the cache, even
if the Statement has already been closed by the application.

To match exactly with a statement already in the cache, the SQL Statement must
meet the following requirements:

• The text must match exactly
• The current schema must match
• The Unicode flag that the statement was compiled under must match the

current connection's flag

Remember:  If your application executes statements that are almost but not exactly alike,
it is more efficient to use PreparedStatements with dynamic or IN parameters.

Figure 2. A database can reuse a statement execution plan when the SQL text matches a prior statement exactly
(PreparedStatements are much more efficient.)
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Shielding users from Derby class-loading events

JVMs tend to load classes as they are needed, which means the first time you need a
class in a piece of software, it takes longer to use.

Derby has three clear cases when a lot of class loading occurs:
• When the system boots

The system boots when you load the embedded driver,
org.apache.derby.jdbc.EmbeddedDriver. In a server framework, the system boots
when you start the server framework. Booting Derby loads basic Derby classes.

• When the first database boots

Booting the first database loads some more Derby classes. The default behavior is
that the first database boots when the first connection is made to it. You can also
configure the system to boot databases at startup. Depending on your application,
one or the other might be preferable.

• When you compile the first query

Compiling the first query loads additional classes.

For any of these events, you can control the impact they have on users by starting them
in separate threads while other tasks are occurring.

In addition, if you are using PreparedStatements, prepare them in a separate thread in
the background while other tasks are occurring.

Tuning tips for multi-user systems
• For concurrency, use row-level locking and the READ_COMMITTED isolation

level.
• For read-only applications, use table-level locking and the READ_COMMITTED

isolation level.



Tuning Java DB

21

• Boot databases at startup to minimize the impact of connecting.

Tuning tips for single-user systems
• Derby boots when you first load the embedded JDBC driver

(org.apache.derby.jdbc.EmbeddedDriver). Load this driver during the least
time-sensitive portion of your program, such as when it is booting or when you are
waiting for user input. For server frameworks, the driver is loaded automatically
when the server boots.

• Boot the database at connection (the default behavior), not at startup. Connect in
a background thread if possible.

• Turn off row-level locking and use READ_COMMITTED isolation level.

Analyzing statement execution
After you create indexes, make sure that Derby is using them. In addition, you might also
want to find out the join order Derby is choosing.

A general plan of attack for analyzing your application's SQL statements:

1. Collect your application's most frequently used SQL statements and transactions
into a single test.

2. Create a benchmark test suite against which to run the sample queries. The first
thing the test suite should do is checkpoint data (force Derby to flush data to disk).
You can do that with the following JDBC code:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE()");
cs.execute();
cs.close();

3. Use performance timings to identify poorly performing queries. Try to distinguish
between cached and uncached data. Focus on measuring operations on uncached
data (data not already in memory). For example, the first time you run a query,
Derby returns uncached data. If you run the same query immediately afterward,
Derby is probably returning cached data. The performance of these two otherwise
identical statements varies significantly and skews results.

4. Use RunTimeStatistics to identify tables that are scanned excessively. Check
that the appropriate indexes are being used to satisfy the query and that Derby
is choosing the best join order. You can also set derby.language.logQueryPlan
to true to check whether indexes are being used or not. This property will is print
query plans in the derby.log file. See the "Derby properties" section of the Java DB
Reference Manual for details on this property. See Working with RunTimeStatistics
for more information.

5. Make any necessary changes and then repeat.
6. If changing data access does not create significant improvements, consider other

database design changes, such as denormalizing data to reduce the number of
joins required. Then review the tips in Application and database design issues.

Working with RunTimeStatistics
Derby provides a language-level tool for evaluating the performance and the execution
plans of statements, the RUNTIMESTATISTICS attribute.

Overview
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When RUNTIMESTATISTICS is turned on for a connection, Derby maintains information
about the execution plan for each statement executed within the connection (except for
COMMIT) until the attribute is turned off.

For the most recently executed query, RUNTIMESTATISTICS returns information about:
• the length of the compile time and the execute time.

This can help in benchmarking queries.
• the statement execution plan.

This is a description of result set nodes, whether an index was used, what the join
order was, how many rows qualified at each node, and how much time was spent
in each node. This information can help you determine whether you need to add
indexes or rewrite queries.

The exact details presented, as well as the format of presentation, can change. There are
two techniques for retrieving the RUNTIMESTATISTICS information:

• call SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS, which retrieves the
RUNTIMESTATISTICS information as formatted text

• call SYSCS_UTIL.SYSCS_SET_XPLAIN_SCHEMA before executing your
statements, which causes Derby to store the RUNTIMESTATISTICS information
in the SYSXPLAIN database tables, which can then be queried later to retrieve the
data.

How you use the RUNTIMESTATISTICS attribute
• To use the RUNTIMESTATISTICS attribute in ij,

turn on and off RUNTIMESTATISTICS using the
SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS() system procedure (see the
Java DB Reference Manual for more information):

-- turn on RUNTIMESTATISTICS for connection:
CALL SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(1);
-- execute complex query here -- step through the result set
-- access runtime statistics information:
VALUES SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS();
CALL SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(0);

• Turn on statistics timing using the
SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING system procedure (see
the Java DB Reference Manual for more information). If you do not turn on
statistics timing, you will see the statement execution plan only, and not the timing
information.

CALL SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(1);
CALL SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING(1);

Although the syntax is different, the basic steps for working with RUNTIMESTATISTICS
are the same in a Java program.

If you are working in ij, set the display width to 5000 or another high number:

MaximumDisplayWidth 5000

Analyzing the information
Statistics timing

If you are using statistics timing, RUNTIMESTATISTICS provides information about
how long each stage of the statement took. An SQL statement has two basic stages
within Derby: compilation and execution. Compilation is the work done while the
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statement is prepared. Compilation is composed of the following stages: parsing, binding,
optimization, and code generation. Execution is the actual evaluation of the statement.

Statement execution plan

RUNTIMESTATISTICS also provides information about the statement execution plan.
The statement execution plan shows how long each node took to evaluate, how many
rows were retrieved, whether an index was used, and so on. If an index was used, it
shows the start and stop positions for the matching index scan. Looking at the plan can
help you determine whether to add an index or to rewrite the query.

A statement execution plan is composed of a tree of result set nodes. A result set node
represents the evaluation of one portion of the statement; it returns rows to a calling (or
parent) node and can receive rows from a child node. A node can have one or more
children. Starting from the top, if a node has children, it requests rows from the children.
Usually only the execution plans of DML statements (queries, inserts, updates, and
deletes, not dictionary object creation) are composed of more than one node.

For example, consider the following query:

SELECT * FROM Countries

This simple query involves one node only-reading all the data out of the Countries table.
It involves a single node with no children. This result set node is called a Table Scan
ResultSet. RUNTIMESTATISTICS text for this node looks something like this:

Statement Name:
        null
Statement Text:
        select * from countries
Parse Time: 20
Bind Time: 10
Optimize Time: 50
Generate Time: 20
Compile Time: 100
Execute Time: 10
Begin Compilation Timestamp : 2005-05-25 09:16:21.24
End Compilation Timestamp : 2005-05-25 09:16:21.34
Begin Execution Timestamp : 2005-05-25 09:16:21.35
End Execution Timestamp : 2005-05-25 09:16:21.4
Statement Execution Plan Text:
Table Scan ResultSet for COUNTRIES at read committed isolation
level using instntaneous share row 
locking chosen by the optimizer
Number of opens = 1
Rows seen = 114
Rows filtered = 0
Fetch Size = 16
        constructor time (milliseconds) = 0
        open time (milliseconds) = 0
        next time (milliseconds) = 10
        close time (milliseconds) = 0
        next time in milliseconds/row = 0

scan information:
        Bit set of columns fetched=All
        Number of columns fetched=3
        Number of pages visited=3
        Number of rows qualified=114
        Number of rows visited=114
        Scan type=heap
        start position:
null    stop position:
null    qualifiers:
None
        optimizer estimated row count:          119.00
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        optimizer estimated cost:           69.35

Consider this second, more complex query:

SELECT Country
FROM Countries
WHERE Region = 'Central America'

When executed, this query involves two nodes- one to retrieve qualifying rows (the
restriction is done at this node) and one to project the requested columns. So, at bottom,
there is a TableScanResultSet for scanning the table. The qualifier (Region = 'Central
America') is evaluated in this node. These data are passed up to the parent node, called
a Project-Restrict ResultSet, in which the rows are projected-only the country column is
needed (the first column in the table). RUNTIMESTATISTICS text for these two nodes
looks something like this:

Statement Name:
        null
Statement Text:
        SELECT Country FROM Countries WHERE Region = 'Central America'
Parse Time: 10
Bind Time: 0
Optimize Time: 370
Generate Time: 10
Compile Time: 390
Execute Time: 0
Begin Compilation Timestamp : 2005-05-25 09:20:41.274
End Compilation Timestamp : 2005-05-25 09:20:41.664
Begin Execution Timestamp : 2005-05-25 09:20:41.674
End Execution Timestamp : 2005-05-25 09:20:41.674
Statement Execution Plan Text:
Project-Restrict ResultSet (2):
Number of opens = 1
Rows seen = 6
Rows filtered = 0
restriction = false
projection = true
        constructor time (milliseconds) = 0
        open time (milliseconds) = 0
        next time (milliseconds) = 0
        close time (milliseconds) = 0
        restriction time (milliseconds) = 0
        projection time (milliseconds) = 0
        optimizer estimated row count:           11.90
        optimizer estimated cost:           69.35

Source result set:
        Table Scan ResultSet for COUNTRIES at read committed isolation
 level
using instantaneous share row locking chosen by the optimizer
        Number of opens = 1
        Rows seen = 6
        Rows filtered = 0
        Fetch Size = 16
                constructor time (milliseconds) = 0
                open time (milliseconds) = 10
                next time (milliseconds) = 0
                close time (milliseconds) = 0
                next time in milliseconds/row = 0

        scan information:
                Bit set of columns fetched={0, 2}
                Number of columns fetched=2
                Number of pages visited=3
                Number of rows qualified=6
                Number of rows visited=114
                Scan type=heap
                start position:
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null            stop position:
null            qualifiers:
Column[0][0] Id: 2
Operator: =
Ordered nulls: false
Unknown return value: false
Negate comparison result: false

                optimizer estimated row count:           11.90
                optimizer estimated cost:           69.35

Other, more complex queries such as joins and unions have other types of result set
nodes.

For inserts, updates, and deletes, rows flow out of the top, where they are inserted,
updated, or deleted. For selects (queries), rows flow out of the top into a result set that is
returned to the user.

The Java DB Reference Manual shows the many possible ResultSet nodes that might
appear in an execution plan.

In addition, read DML statements and performance, for more information about some of
the ways in which Derby executes statements.

Optimizer estimates

RUNTIMESTATISTICS show the optimizer estimates for a particular node. They show
the optimizer's estimated row count and the optimizer's "estimated cost."

The estimated row count is the query optimizer's estimate of the number of qualifying
rows for the table or index for the entire life of the query. If the table is the inner table of
a join, the estimated row count will be for all the scans of the table, not just for a single
scan of the table.

The estimated cost consists of a number, which is a relative number; it does not
correspond directly to any time estimate. It is not, for example, the number of
milliseconds or rows. Instead, the optimizer constructs this number for each possible
access path. It compares the numbers and chooses the access path with the smallest
number.

Optimizer overrides

RUNTIMESTATISTICS provides information about user-specified optimizer hints that
were specified by using a -- DERBY-PROPERTIES clause.

The following example shows a SELECT statement in which the optimizer was forced to
use a particular index:

SELECT * FROM t1 -- DERBY-PROPERTIES index = t1_c1 
FOR UPDATE OF c2, c1

RUNTIMESTATISTICS returns the following information about this statement:

Statement Name: 
   null
Statement Text: select * from t1 --DERBY-PROPERTIES index = t1_c1 
for update of c2, c1

Parse Time: 0
Bind Time: 0
Optimize Time: 0
Generate Time: 0
Compile Time: 0
Execute Time: 0
Begin Compilation Timestamp : null
End Compilation Timestamp : null



Tuning Java DB

26

Begin Execution Timestamp : null
End Execution Timestamp : null
Statement Execution Plan Text: 
Index Row to Base Row ResultSet for T1:
Number of opens = 1
Rows seen = 4
Columns accessed from heap = {0, 1, 2}
   constructor time (milliseconds) = 0
   open time (milliseconds) = 0
   next time (milliseconds) = 0
   close time (milliseconds) = 0
                 User supplied optimizer overrides on T1 are {
 index=T1_C1 }
   Index Scan ResultSet for T1 using index T1_C1 at read committed
 isolation level 
                 using exclusive row locking chosen by the optimizer
   Number of opens = 1
   Rows seen = 4
   Rows filtered = 0
   Fetch Size = 1
      constructor time (milliseconds) = 0
      open time (milliseconds) = 0
      next time (milliseconds) = 0
      close time (milliseconds) = 0
      next time in milliseconds/row = 0
   scan information: 
      Bit set of columns fetched=All
      Number of columns fetched=2
      Number of deleted rows visited=0
      Number of pages visited=1
      Number of rows qualified=4
      Number of rows visited=4
      Scan type=btree
      Tree height=1
      start position: 
   None
      stop position: 
   None
      qualifiers:
None
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DML statements and performance

Performance and optimization
A DBMS often has a choice about the access path for retrieving data. For example,
the DBMS can use an index (fast lookup for specific entries) or scan the entire table to
retrieve the appropriate rows. In addition, in statements in which two tables are joined,
the DBMS can choose which table to examine first (join order) and how to join the tables
(join strategy). Optimization means that DBMS makes the best (optimal) choice of access
paths, join order, and join strategy. True query optimization means that the DBMS will
usually make a good choice regardless of how the query is written. The optimizer does
not necessarily make the best choice, just a good one.

Derby can use indexes to improve the performance of DML (data manipulation language)
statements such as queries, updates, and deletes. The query optimizer can make
decisions about whether to use an index for a particular table (access path) and also
makes decisions about join order, type of join, and a few other matters.

This section gives an overview of the Derby optimizer and discusses performance issues
in the execution of DML statements.

Index use and access paths

If you define an index on a column or columns, the query optimizer can use the index
to find data in the column more quickly. Derby automatically creates indexes to back up
primary key, foreign key, and unique constraints, so those indexes are always available
to the optimizer, as well as those that you explicitly create with the CREATE INDEX
command. The way Derby gets to the data-via an index or directly via the table-is called
the access path.

What is an index?

An index is a database structure that provides quick lookup of data in a column or
columns of a table.

For example, a Flights table in a travelDB database has three indexes:
• An index on the orig_airport column (called OrigIndex)
• An index on the dest_airport column (called DestIndex)
• An index enforcing the primary key constraint on the flight_id and segment_number

columns (which has a system-generated name)

This means there are three separate structures that provide shortcuts into the Flights
table. Let's look at one of those structures, OrigIndex.

OrigIndex stores every value in the orig_airport column, plus information on how to
retrieve the entire corresponding row for each value.

• For every row in Flights, there is an entry in OrigIndex that includes the value of
the orig_airport column and the address of the row itself. The entries are stored in
ascending order by the orig_airport values.

When an index includes more than one column, the first column is the main one by
which the entries are ordered. For example, the index on (flight_id, segment_number)
is ordered first by flight_id. If there is more than one flight_id of the same value, those
entries are then ordered by segment_number. An excerpt from the entries in the index
might look like this:

'AA1111' 1
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'AA1111' 2
'AA1112' 1
'AA1113' 1
'AA1113' 2

Indexes are helpful only sometimes. This particular index is useful when a statement's
WHERE clause is looking for rows for which the value of orig_airport is some specific
value or range of values. SELECTs, UPDATEs, and DELETEs can all have WHERE
clauses.

For example, OrigIndex is helpful for statements such as the following:

SELECT *
FROM Flights
WHERE orig_airport = 'SFO'

SELECT *
FROM Flights
WHERE orig_airport < 'BBB'

SELECT *
FROM Flights
WHERE orig_airport >= 'MMM'

DestIndex is helpful for statements such as the following:

SELECT *
FROM Flights
WHERE dest_airport = 'SCL'

The primary key index (on flight_id and segment_number) is helpful for statements such
as the following:

SELECT *
FROM Flights
WHERE flight_id = 'AA1111'

SELECT *
FROM Flights
WHERE flight_id BETWEEN 'AA1111' AND 'AA1115'

SELECT *
FROM FlightAvailability AS fa, Flights AS fts
WHERE flight_date > CURRENT_DATE
AND fts.flight_id = fa.flight_id
AND fts.segment_number = fa.segment_number

The next section discusses why the indexes are helpful for these statements but not for
others.

What's optimizable?

As you learned in the previous section, Derby might be able to use an index on a column
to find data more quickly. If Derby can use an index for a statement, that statement is
said to be optimizable. The statements shown in the preceding section allow Derby to
use the index because their WHERE clauses provide start and stop conditions. That
is, they tell Derby the point at which to begin its scan of the index and where to end the
scan.

For example, a statement with a WHERE clause looking for rows for which the
orig_airport value is less than BBB means that Derby must begin the scan at the
beginning of the index; it can end the scan at BBB. This means that it avoids scanning
the index for most of the entries.

An index scan that uses start or stop conditions is called a matching index scan.
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Note:  A WHERE clause can have more than one part. Parts are linked with the word
AND or OR. Each part is called a predicate. WHERE clauses with predicates joined by
OR are not optimizable. WHERE clauses with predicates joined by AND are optimizable
if at least one of the predicates is optimizable. For example:

SELECT * FROM Flights
WHERE flight_id = 'AA1111' AND
segment_number <> 2

In this example, the first predicate is optimizable; the second predicate is not. Therefore,
the statement is optimizable.
Note:  In a few cases, a WHERE clause with predicates joined by OR can be
transformed into an optimizable statement. See OR transformations.

Directly optimizable predicates:
Some predicates provide clear-cut starting and stopping points. A predicate provides start
or stop conditions, and is therefore optimizable, when:

• It uses a simple column reference to a column (the name of the column, not
the name of the column within an expression or method call). For example, the
following is a simple column reference:

WHERE orig_airport = 'SFO'

The following is not:

WHERE lower(orig_airport) = 'sfo'
• It refers to a column that is the first or only column in the index.

References to contiguous columns in other predicates in the statement when
there is a multi-column index can further define the starting or stopping points.
(If the columns are not contiguous with the first column, they are not optimizable
predicates but can be used as qualifiers.) For example, given a composite index
on FlightAvailability (flight_id, segment_number, and flight_date), the following
predicate satisfies that condition:

WHERE flight_id = 'AA1200' AND segment_number = 2

The following one does not:

WHERE flight_id = 'AA1200' AND flight_date = CURRENT_DATE
• The column is compared to a constant or to an expression that does not include

columns in the same table. Examples of valid expressions: other_table.column_a, ?
(dynamic parameter), 7+9. The comparison must use the following operators:

• =
• <
• <=
• >
• >=
• IS NULL

Indirectly optimizable predicates:

Some predicates are transformed internally into ones that provide starting and stopping
points and are therefore optimizable.

Predicates that use the following comparison operators can be transformed internally into
optimizable predicates:

• BETWEEN
• LIKE (in certain situations)
• IN (in certain situations)
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For details on these and other transformations, see Internal language transformations.

Joins:

Joins specified by the JOIN keyword are optimizable. This means that Derby can use an
index on the inner table of the join (start and stop conditions are being supplied implicitly
by the rows in the outer table).

Note that joins built using traditional predicates are also optimizable. For example, the
following statement is optimizable:

SELECT * FROM Countries, Cities
WHERE Countries.country_ISO_code = Cities.country_ISO_code

Covering indexes
Even when there is no definite starting or stopping point for an index scan, an index
can speed up the execution of a query if the index covers the query. An index covers
the query if all the columns specified in the query are part of the index. These are the
columns that are all columns referenced in the query, not just columns in a WHERE
clause. If so, Derby never has to go to the data pages at all, but can retrieve all data
through index access alone. For example, in the following queries, OrigIndex covers the
query:

SELECT orig_airport
FROM Flights

SELECT DISTINCT lower(orig_airport) FROM Flights 
FROM Flights

Derby can get all required data out of the index instead of from the table.

Note:  If the query produces an updatable result set, Derby will retrieve all data from the
data pages even if there is an index that covers the query.
Single-column index examples:

The following queries do not provide start and stop conditions for a scan of OrigIndex, the
index on the orig_airport column in Flights. However, some of these queries allow Derby
to do an index rather than a table scan because the index covers the query.

-- Derby  would scan entire table; comparison is not with a 
-- constant or with a column in another table
SELECT *
FROM Flights
WHERE orig_airport = dest_airport
-- Derby  would scan entire table; <> operator is not optimizable
SELECT *
FROM Flights
WHERE orig_airport <> 'SFO'
-- not valid operator for matching index scan
-- However, Derby  would do an index 
-- rather than a table scan because
-- index covers query
SELECT orig_airport
FROM Flights
WHERE orig_airport <> 'SFO'
-- use of a function is not simple column reference
-- Derby  would scan entire index, but not table
-- (index covers query)
SELECT orig_airport
FROM Flights
WHERE lower(orig_airport) = 'sfo'

Multiple-column index example:

The following queries do provide start and stop conditions for a scan of the primary key
index on the flight_id and segment_number columns in Flights:
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-- the where clause compares both columns with valid
-- operators to constants
SELECT *
FROM Flights
WHERE flight_id = 'AA1115'
AND segment_number < 2
-- the first column is in a valid comparison
SELECT *
FROM Flights
WHERE flight_id < 'BB'
-- LIKE is transformed into >= and <=, providing
-- start and stop conditions
SELECT *
FROM Flights
WHERE flight_id LIKE 'AA%'

The following queries do not:

-- segment_number is in the index, but it's not the first column;
-- there's no logical starting and stopping place
SELECT *
FROM Flights
WHERE segment_number = 2
-- Derby  would scan entire table; comparison of first column
-- is not with a constant or column in another table
-- and no covering index applies
SELECT *
FROM Flights
WHERE orig_airport = dest_airport
AND segment_number < 2

Useful indexes can use qualifiers

Matching index scans can use qualifiers that further restrict the result set. Remember
that a WHERE clause that contains at least one optimizable predicate is optimizable.
Nonoptimizable predicates can be useful in other ways.

Consider the following query:

SELECT *
FROM FLIGHTS
WHERE orig_airport < 'BBB'
AND orig_airport <> 'AKL'

The second predicate is not optimizable, but the first predicate is. The second predicate
becomes a qualification for which Derby evaluates the entries in the index as it traverses
it.

• The following comparisons are valid qualifiers:
• =
• <
• <=
• >
• >=
• IS NULL
• BETWEEN
• LIKE
• <>
• IS NOT NULL

• The qualifier's reference to the column does not have to be a simple column
reference; you can put the column in an expression.

• The qualifier's column does not have to be the first column in the index and does
not have to be contiguous with the first column in the index.
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When a table scan Is better

Sometimes a table scan is the most efficient way to access data, even if a potentially
useful index is available. For example, if the statement returns virtually all the data in
the table, it is more efficient to go straight to the table instead of looking values up in an
index, because then Derby is able to avoid the intermediate step of retrieving the rows
from the index lookup values.

For example:

SELECT *
FROM Flights
WHERE dest_airport < 'Z'

In the Flights table, most of the airport codes begin with letters that are less than Z.
Depending on the number of rows in the table, it is probably more efficient for Derby to
go straight to the table to retrieve the appropriate rows. However, for the following query,
Derby uses the index:

SELECT *
FROM Flights
WHERE dest_airport < 'B'

Only a few flights have airport codes that begin with a letter less than B.

Indexes have a cost for inserts, updates, and deletes
Derby has to do work to maintain indexes. If you insert into or delete from a table, the
system has to insert or delete rows in all the indexes on the table. If you update a table,
the system has to maintain those indexes that are on the columns being updated. So
having a lot of indexes can speed up select statements, but slow down inserts, updates,
and deletes.
Note:  Updates and deletes with WHERE clauses can use indexes for scans, even if the
indexed column is being updated.

Joins and performance

Joins, SQL statements in which Derby selects data from two or more tables using one or
more key columns from each table, can vary widely in performance. Factors that affect
the performance of joins are join order, indexes, and join strategy.

Join order overview

The Derby optimizer usually makes a good choice about join order. This section
discusses the performance implications of join order.

In a join operation involving two tables, Derby scans the tables in a particular order.
Derby accesses rows in one table first, and this table is now called the outer table.

Then, for each qualifying row in the outer table, Derby looks for matching rows in the
second table, which is called the inner table.

Derby accesses the outer table once, and the inner table probably many times
(depending on how many rows in the outer table qualify).

This leads to a few general rules of thumb about join order:
• If the join has no restrictions in the WHERE clause that would limit the number of

rows returned from one of the tables to just a few, the following rules apply:
• If only one table has an index on the joined column or columns, it is much

better for that table to be the inner table. This is because for each of the many
inner table lookups, Derby can use an index instead of scanning the entire
table.
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• Since indexes on inner tables are accessed many times, if the index on one
table is smaller than the index on another, the table with the smaller one
should probably be the inner table. That is because smaller indexes (or tables)
can be cached (kept in Derby's memory, allowing Derby to avoid expensive
I/O for each iteration).

• On the other hand, if a query has restrictions in the WHERE clause for one table
that would cause it to return only a few rows from that table (for example, WHERE
flight_id = 'AA1111'), it is better for the restricted table to be the outer table. Derby
will have to go to the inner table only a few times anyway.
Consider:

SELECT *
FROM huge_table, small_table
WHERE huge_table.unique_column = 1
AND huge_table.other_column = small_table.non_unique_column

• In this case, the qualification huge_table.unique_column = 1 (assuming a unique
index on the column) qualifies only one row, so it is better for huge_table to be the
outer table in the join.

Join strategies

The most common join strategy in Derby is called a nested loop. For each qualifying row
in the outer table, Derby uses the appropriate access path (index or table) to find the
matching rows in the inner table.

Another type of join in Derby is called a hash join. For joins of this type, Derby constructs
a hash table representing all the selected columns of the inner table. For each qualifying
row in the outer table, Derby does a quick lookup on the hash table to get the inner table
data. Derby has to scan the inner table or index only once, to build the hash table.

Nested loop joins are preferable in most situations.

Hash joins are preferable in situations in which the inner table values are unique and
there are many qualifying rows in the outer table. Hash joins require that the statement's
WHERE clause be an optimizable equijoin:

• It must use the = operator to compare column(s) in the outer table to column(s) in
the inner table.

• References to columns in the inner table must be simple column references. Simple
column references are described in Directly optimizable predicates.

The hash table for a hash join is held in memory and if it gets big enough, it will spill to
the disk. The optimizer makes a very rough estimate of the amount of memory required
to make the hash table. If it estimates that the amount of memory required would exceed
the system-wide limit of memory use for a table, the optimizer chooses a nested loop join
instead.

If memory use is not a problem for your environment, set this property to a high number;
allowing the optimizer the maximum flexibility in considering a join strategy queries
involving large queries leads to better performance. It can also be set to smaller values
for more limited environments.
Note:  Derby allows multiple columns as hash keys.

Derby's cost-based optimization
The query optimizer makes cost-based decisions to determine:

• Which index (if any) to use on each table in a query (see About the optimizer's
choice of access path)

• The join order (see About the optimizer's choice of join order)
• The join strategy (see About the optimizer's choice of join strategy)
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• Whether to avoid additional sorting (see About the optimizer's choice of sort
avoidance)

• Automatic lock escalation (see About the system's selection of lock granularity)
• Whether to use bulk fetch (see About the optimizer's selection of bulk fetch)

About the optimizer's choice of access path

The optimizer's choice of access path can depend on the number of rows it will have to
read. It tries to choose a path that requires the fewest number of rows read. For joins,
the number of rows read also depends heavily on the join order (discussed in About the
optimizer's choice of join order.)

How does the optimizer know how many rows a particular access path will read? The
answer: sometimes it knows exactly, and sometimes it has to make an educated guess.
See Selectivity and cardinality statistics.

About the optimizer's choice of join order

The optimizer chooses the optimal join order as well as the optimal index for each table.
The join order can affect which index is the best choice. The optimizer can choose an
index as the access path for a table if it is the inner table, but not if it is the outer table
(and there are no further qualifications).

The optimizer chooses the join order of tables only in simple FROM clauses. Most joins
using the JOIN keyword are flattened into simple joins, so the optimizer chooses their join
order.

The optimizer does not choose the join order for outer joins; it uses the order specified in
the statement.

When selecting a join order, the optimizer takes into account:
• The size of each table
• The indexes available on each table
• Whether an index on a table is useful in a particular join order
• The number of rows and pages to be scanned for each table in each join order

Note:  Derby does transitive closure on qualifications. For details, see Transitive closure.

Join order case study:

For example, consider the following situation:

The Flights table (as you know) stores information about flight segments. It has a primary
key on the flight_id and segment_number columns. This primary key constraint is backed
up by a unique index on those columns.

The FlightAvailability table, which stores information about the availability of flight
segments on particular days, can store several rows for a particular row in the Flights
table (one for each date).

You want to see information about all the flights, and you issue the following query:

SELECT *
FROM FlightAvailability AS fa, Flights AS fts
WHERE fa.flight_id = fts.flight_id
AND fa.segment_number = fts.segment_number

First imagine the situation in which there are no useful indexes on the FlightAvailability
table.

Using the join order with FlightAvailability as the outer table and Flights as the inner
table is cheaper because it allows the flight_id/segment_number columns from
FlightAvailability to be used to probe into and find matching rows in Flights, using the
primary key index on Flights.flight_id and Flights.segment_number.
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This is preferable to the opposite join order (with Flights as the outer table and
FlightAvailability as the inner table) because in that case, for each row in Flights, the
system would have to scan the entire FlightAvailability table to find the matching rows
(because there is no useful index- an index on the flight_id/segment_number columns).

Second, imagine the situation in which there is a useful index on the FlightAvailability
table (this is actually the case in the sample database). FlightAvailability has a
primary key index on flight_id, segment_number, and booking_date. In that index, the
flight_id-segment_number combination is not unique, since there is a one-to-many
correspondence between the Flights table and the FlightAvailability table. However, the
index is still very useful for finding rows with particular flight_id/segment_number values.

You issue the same query:

SELECT *
FROM FlightAvailability AS fa, Flights AS fts
WHERE fa.flight_id = fts.flight_id
AND fa.segment_number = fts.segment_number

Although the difference in cost is smaller, it is still cheaper for the Flights table to be the
inner table, because its index is unique, whereas FlightAvailability's index is not. That is
because it is cheaper for Derby to step through a unique index than through a non-unique
index.

About the optimizer's choice of join strategy

The optimizer compares the cost of choosing a hash join (if a hash join is possible) to the
cost of choosing a nested loop join and chooses the cheaper strategy. For information
about when hash joins are possible, see Join strategies.

In some cases, the size of the hash table that Derby would have to build is prohibitive
and can cause the JVM to run out of memory. For this reason, the optimizer has an
upper limit on the size of a table on which it will consider a hash join. It will not consider
a hash join for a statement if it estimates that the size of the hash table would exceed
the system-wide limit of memory use for a table, the optimizer chooses a nested loop join
instead. The optimizer's estimates of size of hash tables are approximate only.

About the optimizer's choice of sort avoidance

Some SQL statements require that data be ordered, including those with ORDER BY,
GROUP BY, and DISTINCT. MIN() and MAX() aggregates also require ordering of data.

Derby can sometimes avoid sorting steps for:
• statements with ORDER BY

See Cost-based ORDER BY sort avoidance

Derby can also perform the following optimizations, but they are not based on cost:
• sort avoidance for DISTINCT and GROUP BYs

See Non-cost-based sort avoidance (tuple filtering)
• statements with a MIN() aggregate

See The MIN() and MAX() optimizations

Cost-based ORDER BY sort avoidance:

Usually, sorting requires an extra step to put the data into the right order. This extra step
can be avoided for data that are already in the right order. For example, if a single-table
query has an ORDER BY on a single column, and there is an index on that column,
sorting can be avoided if Derby uses the index as the access path.

Where possible, Derby's query compiler transforms an SQL statement internally into
one that avoids this extra step. For information about internal transformations, see Sort
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avoidance. This transformation, if it occurs, happens before optimization. After any such
transformations are made, the optimizer can do its part to help avoid a separate sorting
step by choosing an already sorted access path. It compares the cost of using that path
with the cost of sorting. Derby does this for statements that use an ORDER BY clause in
the following situations:

• The statements involve tables with indexes that are in the correct order.
• The statements involve scans of unique indexes that are guaranteed to return only

one row per scan.

ORDER BY specifies a priority of ordering of columns in a result set. For example,
ORDER BY X, Y means that column X has a more significant ordering than column Y.

The situations that allow Derby to avoid a separate ordering step for statements with
ORDER BY clauses are:

• Index scans, which provide the correct order.

-- covering index
SELECT flight_id FROM Flights ORDER BY flight_id

• The rows from a table when fetched through an index scan.

-- if Derby  uses the index on orig_airport
-- to access the data, it can avoid the sort
-- required by the final ORDER BY
SELECT orig_airport, miles
FROM FLIGHTS
WHERE orig_airport < 'DDD'
ORDER BY orig_airport

• The rows from a join when ordered by the indexed column or columns in the outer
table.

-- if Derby  chooses Cities as the outer table, it
-- can avoid a separate sorting step
SELECT * FROM cities, countries
WHERE cities.country_ISO_code = countries.country_ISO_code
AND cities.country_ISO_code < 'DD'
ORDER BY cities.country_ISO_code

• Result sets that are guaranteed to return a single row. They are ordered on all of
their columns (for example, if there are equality conditions on all the columns in a
unique index, all the columns returned for that table can be considered ordered,
with any priority of ordering of the columns).

-- query will only return one row, so that row is
-- "in order" for ANY column
SELECT miles
FROM Flights
WHERE flight_id = 'US1381' AND segment_number = 2
ORDER BY miles

• Any column in a result set that has an equality comparison with a constant. The
column is considered ordered with no priority to its ordering.

-- The comparison of segment_number
-- to a constant means that it is always correctly
-- ordered. Using the index on (flight_id, segment_number)
-- as the access path means
-- that the ordering will be correct for the ORDER BY
-- clause in this query. The same thing would be true if
-- flight_id were compared to a constant instead.
SELECT segment_number, flight_id
FROM Flights
WHERE segment_number=2
ORDER BY segment_number, flight_id

And because of transitive closure, this means that even more complex statements
can avoid sorting. For example:
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-- transitive closure means that Derby  will
-- add this clause:
-- AND countries.country_ISO_code = 'CL', which means
-- that the ordering column is now compared to a constant,
-- and sorting can be avoided.
SELECT * FROM cities, countries
WHERE cities.country_ISO_code = 'CL'
AND cities.country_ISO_code = countries.country_ISO_code
ORDER BY countries.country_ISO_code

For more information about transitive closure and other statement transformations,
see Internal language transformations.

About the system's selection of lock granularity
When a system is configured for row-level locking, it decides whether to use table-level
locking or row-level locking for each table in each DML statement. The system bases
this decision on the number of rows read or written for each table, and on whether a full
conglomerate scan is done for each table.
Note:  When you have turned off row-level locking for your system, Derby always uses
table-level locking.

The first goal of the system's decision is concurrency; wherever possible, the system
chooses row-level locking. However, row-level locking uses a lot of resources and
might have a negative impact on performance. Sometimes row-level locking does
not provide much more concurrency than table-level locking. In those situations,
the system might choose to escalate the locking scheme from row-level locking to
table-level locking to improve performance. For example, if a connection is configured for
TRANSACTION_SERIALIZABLE isolation, the system chooses table-level locking for the
following statement:

SELECT *
FROM FlightAvailability AS fa, Flights AS fts
WHERE fts.flight_id = fa.flight_id
AND fts.segment_number = fa.segment_number

To satisfy the isolation requirements, Derby would have to lock all the rows in both the
FlightAvailability and the Flights tables. Locking both the tables would be cheaper, would
provide the same isolation, and would allow the same concurrency.
Note:  You can force lock escalation for specific tables when you alter them with the
LOCKSIZE clause. For these tables, Derby always chooses table-level locking. For more
information, see the Java DB Reference Manual.

How the system makes its decision if it has a choice:
If the lock granularity (whether to lock rows or entire tables) is not forced by the user, the
system makes a decision using the following rules:

• For SELECT statements running in READ_COMMITTED isolation, the system
always chooses row-level locking.

• If the statement scans the entire table or index and it does not meet the criteria
above, the system chooses table-level locking. (A statement scans the entire table
whenever it chooses a table as the access path.)

• If a statement partially scans the index, the system uses row-level locking, until
the number of rows touched on a table reaches lock escalation threshold. It is
then escalated to a table lock. (You can configure this threshold number; see Lock
escalation threshold.)

• For SELECT, UPDATE, and DELETE statements, the number of rows touched
is different from the number of rows read. If the same row is read more than
once, it is considered to have been touched only once. Each row in the inner
table of a join can be read many times, but can be touched at most one time.
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Lock escalation threshold:

The system property derby.locks.escalationThreshold determines the threshold for
number of rows touched for a particular table above which the system will escalate to
table-level locking. The default value of this property is 5000. For large systems, set
this property to a higher value. For smaller systems, lower it. See the "Derby properties"
section of the Java DB Reference Manual for details on this property.

This property also sets the threshold for transaction-based lock escalation (see
Transaction-based lock escalation).
Note:  For more information about lock escalation, see Locking and performance.

About the optimizer's selection of bulk fetch

When Derby retrieves data from a conglomerate, it can fetch more than one row at a
time. Fetching more than one row at a time is called bulk fetch. By default, Derby fetches
16 rows at a time.

Bulk fetch is faster than retrieving one row at a time when a large number of rows qualify
for each scan of the table or index. Bulk fetch uses extra memory to hold the pre-fetched
rows, so it should be avoided in situations in which memory is scarce.

Bulk fetch is automatically turned off for updatable cursors, for hash joins, for statements
in which the scan returns a single row, and for subqueries. It is useful, however, for table
scans or index range scans:

SELECT *
FROM Flights
WHERE miles > 4

SELECT *
FROM Flights

The default size for bulk fetch (16 rows) typically provides good performance.

Locking and performance
Row-level locking improves concurrency in a multi-user system. However, a large
number of row locks can degrade performance. About the system's selection of lock
granularity discussed the way the optimizer makes some compile-time decisions about
escalating row locks to table locks for performance reasons. This section discusses ways
in which the Derby system and the user can make similar lock escalations.

Transaction-based lock escalation

The optimizer makes its decisions for the scope of a single statement at compile
time; the runtime overrides are also for the scope of a single statement. As you
know, a transaction can span several statements. For connections running in
TRANSACTION_SERIALIZABLE isolation and for connections that are doing a lot of
inserts or updates, a transaction can accumulate a number of row locks even though
no single statement would touch enough rows to make the optimizer choose table-level
locking for any single table.

However, during a transaction, the Derby system tracks the number of locks for all tables
in the transaction, and when this number exceeds a threshold number (which you can
configure; see Lock escalation threshold), the system attempts to escalate locking for at
least one of the tables involved from row-level to table-level locking.

The system attempts to escalate to table-level locking for each table that has a
burdensome number of locks by trying to obtain the relevant table lock. If the system can
lock the table without waiting, the system locks the entire table and releases all row locks
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for the table. If the system cannot lock the table without waiting, the system leaves the
row locks intact.

After a table is locked in either mode, a transaction does not acquire any subsequent
row-level locks on a table. For example, if you have a table called Hotels that contained
several thousand rows and a transaction locks the entire table in share mode in order to
read data, it might later need to lock a particular row in exclusive mode in order to update
the row. However, the previous table-level lock on Hotels forces the exclusive lock to be
table-level as well.

This transaction-based runtime decision is independent of any compilation decision.

If when the escalation threshold was exceeded the system did not obtain any table locks
because it would have had to wait, the next lock escalation attempt is delayed until the
number of held locks has increased by some significant amount, for example from 5000
to 6000.

Here are some examples assuming the escalation threshold is 5000:
• Single table holding the majority of the locks

Table Number of row locks Promote?

Hotels 4853 yes

Countries 3 no

Cities 12 no

• Two tables holding the majority of the locks

Table Number of row locks Promote?

Hotels 2349 yes

Countries 3 no

Cities 1800 yes

• Many tables holding a small number of locks

Table Number of row locks Promote?

table001 279 no

table002 142 no

table003 356 no

table004 79 no

table194 384 no

table195 416 no

Locking a table for the duration of a transaction

In addition, you can explicitly lock a table for the duration of a transaction with the LOCK
TABLE statement. This is useful if you know in advance that an entire table should be
locked and want to save the resources required for obtaining row locks until the system
escalates the locking. For information about this feature, see "LOCK TABLE statement"
in the Java DB Reference Manual.
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Non-cost-based optimizations
The optimizer makes some non-cost-based optimizations, which means that it does not
consider them when determining the access path and join order. If all the conditions are
right, it makes the optimizations after the access path and join order are determined.

Non-cost-based sort avoidance (tuple filtering)

In most cases, Derby needs to perform two separate steps for statements that use
DISTINCT or GROUP BY: first sorting the selected columns, then either discarding
duplicate rows or aggregating grouped rows. Sometimes it is able to avoid sorting for
these statements with tuple filtering. Tuple filtering means that the rows are already in
a useful order. For DISTINCT, Derby can simply filter out duplicate values when they
are found and return results to the user sooner. For GROUP BY, Derby can aggregate a
group of rows until a new set of rows is detected and return results to the user sooner.

These are non-cost-based optimizations; the optimizer does not yet consider the cost of
these optimizations.

The examples in this section refer to the following tables:

CREATE TABLE t1(c1 INT, c2 INT, c3 INT, c4 INT)
CREATE INDEX i1 ON t1(c1)
CREATE INDEX i1_2_3_4 ON t1(c1, c2, c3, c4)

DISTINCT
Tuple filtering is applied for a DISTINCT when the following criteria are met:

• The SELECT list is composed entirely of simple column references and constants.
• All simple column references come from the same table and the optimizer has

chosen the table in question to be the outermost table in the query block.
• The optimizer has chosen an index as the access path for the table in question.
• The simple column references in the SELECT list, plus any simple column

references from the table that have equality predicates on them, are a prefix of the
index that the optimizer selected as the access path for the table.

Note:  The set of column references must be an in-order prefix of the index.

Here is the most common case in which tuple filtering will be applied:

SELECT DISTINCT c1 FROM t1

Equality predicates allow tuple filtering on the following:

SELECT DISTINCT c2
FROM t1
WHERE c1 = 5

SELECT DISTINCT c2, c4
FROM t1
WHERE c1 = 5 and c3 = 7
-- the columns don't have to be in the
-- same order as the index
SELECT DISTINCT c2, c1
FROM t1

Quick DISTINCT scans:
Derby can use a hash table instead of a sorter to eliminate duplicates when performing a
DISTINCT in the following cases:

• There is a single table in the query block.
• An ORDER BY clause is not merged into the DISTINCT.
• All entries in the SELECT list are simple column references.
• There are no predicates in the query block.
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This technique allows for minimal locking when performing the scan at the READ
COMMITTED isolation level.
Note:  This technique appears in RunTimeStatistics as a DistinctScanResultSet.

GROUP BY
Tuple filtering is applied for a GROUP BY when the following criteria are met:

• All grouping columns come from the same table and the optimizer has chosen the
table in question to be the outermost table in the query block.

• The optimizer has chosen an index as the access path for the table in question.
• The grouping columns, plus any simple column references from the table that have

equality predicates on them, are a prefix of the index that the optimizer selected as
the access path for the table.

Here is the most common case in which tuple filtering will be applied:

SELECT max(c2) FROM t1 GROUP BY c1

Equality predicates allow tuple filtering on the following:

SELECT c2, SUM(c3)
FROM t1
WHERE c1 = 5 GROUP BY c2

SELECT max(c4)
FROM t1
WHERE c1 = 5 AND c3 = 6 GROUP BY c2

The MIN() and MAX() optimizations

The optimizer knows that it can avoid iterating through all the source rows in a result to
compute a MIN() or MAX() aggregate when data are already in the right order. When
data are guaranteed to be in the right order, Derby can go immediately to the smallest
(minimum) or largest (maximum) row.

The following conditions must be true:
• The MIN() or MAX() is the only entry in the SELECT list.
• The MIN() or MAX() is on a simple column reference, not on an expression.
• For MAX(), there must not be a WHERE clause.
• For MIN():

• The referenced table is the outermost table in the optimizer's chosen join order
for the query block.

• The optimizer chose an index containing the referenced column as the access
path.

• The referenced column is the first key column in that index OR the referenced
column is a key column in that index and equality predicates exist on all key
columns prior to the simple column reference in that index.

For example, the optimizer can use this optimization for the following queries (if the
optimizer uses the appropriate indexes as the access paths):

-- index on orig_airport
SELECT MIN(orig_airport)
FROM Flights
-- index on orig_airport
SELECT MAX(orig_airport)
FROM Flights
-- index on orig_airport
SELECT miles 
FROM Flights 
WHERE orig_airport = (SELECT MIN(orig_airport)
FROM Flights)
-- index on segment_number, flight_id
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SELECT MIN(segment_number) 
FROM Flights 
WHERE flight_id = 'AA1111' 
SELECT * 
FROM Flights 
WHERE segment_number = (SELECT MIN(segment_number) 
FROM Flights 
WHERE flight_id = 'AA1111')

The optimizer decides whether to implement the optimization after choosing the plan for
the query. The optimizer does not take this optimization into account when costing the
plan.

Overriding the default optimizer behavior
You can override the default behavior of the Derby query optimizer by including a
--DERBY-PROPERTIES clause and an associated property as a comment within an SQL
statement.

Because optimizer overrides are expressed as comments, they must be included at the
end of a line. You can specify optimizer override properties for an entire FROM clause,
for tables in the FROM clause, or for both.

The syntax for a FROM clause property is:

FROM [ -- DERBY-PROPERTIES joinOrder = { FIXED | UNFIXED } ]
         TableExpression [,TableExpression]*

The syntax for table optimizer override properties, which must be included at the end of a
TableExpression, is:

{table-Name | view-Name }
         [ [ AS ] correlation-Name
         [ (Simple-column-Name [ , Simple-column-Name ]* ) ] ]
         [ -- DERBY-PROPERTIES { constraint = constraint-Name | index =
 index-Name | joinStrategy = { NESTEDLOOP | HASH } } ]

The space between -- and DERBY-PROPERTIES is optional.

> Important:  Make sure that you adhere to the correct syntax when using the
--DERBY-PROPERTIES clause. Failure to do so can cause the parser to interpret it as a
comment and ignore it. To verify that the parser interpreted your overrides correctly, you
can use RunTimeStatistics. See Optimizer overrides for more information.
The following four properties are available for use in a --DERBY-PROPERTIES clause:
constraint

To force the use of the index that enforces a primary key, a foreign key, or unique
constraint, use the constraint property and specify the unqualified name of the
constraint. The constraint property can be used only within a TableExpression, and
it can be specified only on base tables; it cannot be specified on views or derived
tables.

index
The index property is similar to the constraint property. To force use of a particular
index, specify the unqualified index name. To force a table scan, specify null for the
index name. The index property can be used only within a TableExpression, and
it can be specified only on base tables; it cannot be specified on views or derived
tables.

joinOrder
Use the joinOrder property to override the optimizer’s choice of join order for two
tables. When the value FIXED is specified, the optimizer will choose the order of
tables as they appear in the FROM clause as the join order. Valid values for the
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joinOrder property include FIXED and UNFIXED. The joinOrder property can be used
with a FROM clause.

joinStrategy
Use the joinStrategy property to override the optimizer’s choice of join strategy. The
two types of join strategy are called nested loop and hash. In a nested loop join
strategy, for each qualifying row in the outer table, Derby uses the appropriate access
path (index or table scan) to find the matching rows in the inner table. In a hash join
strategy, Derby constructs a hash table that represents the inner table. For each
qualifying row in the outer table, Derby does a quick lookup on the hash table to find
the matching rows in the inner table. Derby needs to scan the inner table or index
only once to create the hash table. The --DERBY-PROPERTIES parameter must
immediately follow the inner table.

Typically, you will use the joinStrategy property only in conjunction with the joinOrder
property. Specifying a join strategy without knowing the join order can result in
less-than-optimal performance.

Valid values include HASH and NESTEDLOOP. The joinStrategy property can be
used only within a TableExpression.

The following examples illustrate the use of the --DERBY-PROPERTIES clause:
constraint

CREATE TABLE t1 (c1 int, c2 int, c3 int, CONSTRAINT cons1 PRIMARY KEY
 (c1, c2))
INSERT INTO t1 VALUES (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)
SELECT * FROM t1 --DERBY-PROPERTIES constraint=cons1
FOR UPDATE

index

CREATE TABLE t1 (c1 int, c2 int, c3 int, CONSTRAINT cons1 PRIMARY KEY
 (c1, c2))
INSERT INTO t1 VALUES (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)
CREATE INDEX t1_c1 ON t1(c1)
SELECT * FROM t1 --DERBY-PROPERTIES index=t1_c1
WHERE c1=1

joinOrder

CREATE TABLE t1 (c1 int, c2 int, c3 int, CONSTRAINT cons1 PRIMARY KEY
 (c1, c2))
CREATE TABLE t2 (c1 int not null, c2 int not null, c3 int, CONSTRAINT
 cons2 UNIQUE (c1, c2))
INSERT INTO t1 VALUES (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)
INSERT INTO t2 VALUES (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)
SELECT * FROM --DERBY-PROPERTIES joinOrder=FIXED
t1, t2
WHERE t1.c1=t2.c1

joinStrategy

CREATE TABLE t1 (c1 int, c2 int, c3 int, CONSTRAINT cons1 PRIMARY KEY
 (c1, c2))
CREATE TABLE t2 (c1 int not null, c2 int not null, c3 int, CONSTRAINT
 cons2 UNIQUE (c1, c2))
INSERT INTO t1 VALUES (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)
INSERT INTO t2 VALUES (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)
SELECT * FROM --DERBY-PROPERTIES joinOrder=FIXED 
t1 a, t1 b --DERBY-PROPERTIES joinStrategy=NESTEDLOOP
WHERE a.c1=b.c1
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Selectivity and cardinality statistics

The optimizer determines the number of rows that will be scanned from disk when
deciding on an access path for a particular table (whether to use an index or to scan the
table).

• The optimizer knows "exactly" the number of rows that will be scanned from disk for
table scans (see Determinations of rows scanned from disk for a table scan).

• For index scans, the optimizer must estimate the number of rows that will be
scanned from disk. (see Estimations of rows scanned from disk for an index scan).
Derby might be able to use cardinality statistics to make a better estimate of the
number of rows that will be scanned from disk as described in this chapter.

Determinations of rows scanned from disk for a table scan
For table scans, the optimizer does not need to estimate the number of rows that will be
scanned from disk during the scan; the number of rows that will be scanned from disk will
be equal to the number of rows in the table, as described below.

How the optimizer determines the number of rows in a table

The optimizer uses a stored row count to determine the number of rows in a table, which
is maintained automatically by the system.

Normally, an updated value is stored in the database whenever the database goes
through an orderly shutdown (as long as the database is not read-only). Stored row
counts become inaccurate if there is a non-orderly shutdown (for example, a power
failure or other type of system crash).

You can correct the optimizer's row count without shutting down the system; Derby sets
the stored row count for a table to the correct value whenever a query that does a full
scan on the base conglomerate finishes. For example, executing the following query sets
the row count for table Flights to the correct value:

SELECT * FROM Flights

Derby also sets the stored row count on a table to the correct value whenever a user
creates a new index or primary key, unique, or foreign key constraint on the table. This
value is not guaranteed to be written to disk.

Estimations of rows scanned from disk for an index scan
When an index is available, the optimizer has to estimate the number of rows that will
be scanned from disk. The accuracy of this estimate depends on the type of query being
optimized.

Queries with a known search condition

When the exact start and stop conditions are known at compilation time, the optimizer
uses the index itself to make a very precise estimate of the number of rows that will be
scanned from disk. An example of a query with a known search condition:

SELECT *
FROM Flights
WHERE orig_airport = 'SFO'
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The search value, 'SFO', is known. The optimizer will be able to make an accurate
estimate of the cost of using the index orig_index.

In addition, if the index is unique, and the WHERE clause involves an = or IS NULL
comparison to all the columns in the index, the optimizer knows that only a single row will
be scanned from disk. For example:

-- there's a unique key on city_id
SELECT * FROM Cities WHERE city_id = 1

Queries with an unknown search condition
Queries sometimes have an unknown search condition, such as in the case when
the statement's WHERE clause involves dynamic parameters that are known only at
execution time and not at compilation time, or when the statement involves a join. For
example:

-- dynamic parameters
SELECT *
FROM Flights
WHERE orig_airport = ?

rollback
-- joins
SELECT * FROM Countries, Cities
WHERE Countries.country_ISO_code = Cities.country_ISO_code

-- complex search conditions
SELECT * FROM Countries
WHERE region = (select region from Countries where country = 'Spain')

In the above SELECT statements, the optimizer cannot get enough useful information
from the index about how many rows will be returned by a particular access path.
However, it can often make a good guess by looking at a table's selectivity for a particular
WHERE clause.

Selectivity refers to the fraction of rows that will be returned from the table for the
particular WHERE clause. The optimizer multiplies the number of rows in the table by
the selectivity for a particular operation. For example, if the selectivity for a particular
search operation is .10, and the table contains 100 rows, the optimizer estimates that the
operation will return 10 rows. (This is not exact; it is just a good guess.)

Statistics-based versus hard-wired selectivity
Derby determines the selectivity for a WHERE clause in one of two ways.

Selectivity from cardinality statistics

Cardinality statistics are computed by the Derby system and stored in the system tables.
For information on when these statistics get created or updated, see When cardinality
statistics are automatically updated.

Derby can use cardinality statistics if:
• The statistics exist
• The relevant columns in the WHERE column are leading columns in an index
• The columns are compared to values using only the = operator
• Statistics are not turned off in the system or query

Selectivity from hard-wired assumptions
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In all other cases, Derby uses a fixed number that attempts to describe the percentage
of rows that will probably be returned; it might not correspond to the actual selectivity of
the operation in every case. It is an assumption hard-wired into the Derby system. These
assumptions are shown in Selectivity for various operations for index scans when search
values are unknown in advance and statistics are not used.

Table 2. Selectivity for various operations for index scans when search values are
unknown in advance and statistics are not used

Operator Selectivity

=, >=, >, <=, <, <> when data type of parameter is a boolean .5 (50%)

other operators (except for IS NULL and IS NOT NULL) when data type
of parameter is boolean

.5 (50%)

IS NULL .1 (10%)

IS NOT NULL .9 (90%)

= .1 (10%)

>, >=, <, <= .33 (3%)

<> compared to non-boolean type .9 (90%)

LIKE transformed from LIKE predicate (see LIKE transformations) 1.0 (100%)

>= and < when transformed internally from LIKE (see LIKE
transformations)

.25 (.5 X .5)

>= and <= operators when transformed internally from BETWEEN (see
BETWEEN transformations)

.25 (.5 X .5)

What are cardinality statistics?
When Derby creates statistics for a table's index, it calculates and stores in the system
tables:

• The number of rows in the table
• The number of unique values for a set of columns for leading columns in an index

key, also known as cardinality. Leading columns refers to the first column, or the
first and second column, or the first, second, and third column of an index (and so
on). Derby cannot compute the number of columns for which a combination of the
non-leading columns is unique.

For example, consider the primary key on the table FlightAvailability:

CONSTRAINT FLIGHTAVAILABILITY_PK Primary Key (
      FLIGHT_ID,
      SEGMENT_NUMBER,
      FLIGHT_DATE)

For this index, Derby keeps the following information:
• The number of rows in the table FlightAvailability
• The number of unique rows for the full key (flight_id, segment_number, flight_date)
• The number of unique rows for the key (flight_id, segment_number)
• The number of unique rows for the key (flight_id)

How does Derby use these two numbers-the number of rows in a table and the
cardinality of a particular key-to determine the selectivity of a query? Take this example:

SELECT * FROM Flights, FlightAvailability
WHERE Flights.flight_id = OtherTable.flight_id
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If the cardinality for flight_id in Flights is 250, then the selectivity of the predicate is 1/250.
The optimizer would estimate the number of rows read to be:

((Rows in Flights) * (Rows in OtherTable))/250

Working with cardinality statistics
Cardinality Statistics are gathered on the keys of an index when the index is created.

When cardinality statistics are automatically updated
For the following operations that you perform on a table, Derby automatically creates new
statistics or updates existing statistics:

• When you create a new index on an existing non-empty table. Statistics are
automatically created for only the new index.

• When you add a primary key, unique, or foreign key constraint to an existing
non-empty table. If there is no existing index that can be used for the new key or
constraint, Derby automatically creates statistics for only the new indexes.

• When you run the SYSCS_UTIL.SYSCS_COMPRESS_TABLE system procedure.
Statistics are created automatically for all indexes if the statistics do not already
exist.

• When you drop a column that is part of a table's index, the statistics for the affected
index are dropped. Statistics are automatically updated for the other indexes on the
table.

When cardinality statistics go stale

As you saw in When cardinality statistics are automatically updated, cardinality statistics
are automatically updated only in limited cases. Normal insert, update, and delete
statements do not cause the statistics to be updated. This means that statistics can go
stale. Stale statistics can slow your system down, because they worsen the accuracy of
the optimizer's estimates of selectivity.

Statistics are likely to be stale if the number of distinct values in an index has
changed significantly. This can happen often or rarely, depending on the nature of the
column being indexed. You can refresh cardinality statistics by calling the procedure
SYSCS_UTIL.SYSCS_UPDATE_STATISTICS. For information about this procedure, see
the Java DB Reference Manual.
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Internal language transformations

The Derby SQL parser sometimes transforms SQL statements internally for performance
reasons. This appendix describes those transformations. Understanding the internal
language transformations can help you analyze and tune performance. Understanding
the internal language transformations is not necessary for the general user.

This chapter uses some specialized terms. Here are some definitions:

base table

A real table in a FROM list. In queries that involve "virtual" tables such as views
and derived tables, base tables are the underlying tables to which virtual tables
correspond.

derived table

A virtual table, such as a subquery given a correlation name or a view.
For example: SELECT derivedtable.c1 FROM (VALUES ('a','b')) AS
derivedtable(c1,c2).

equality predicate

A predicate in which one value is compared to another value using the = operator.

equijoin predicate

A predicate in which one column is compared to a column in another table using
the = operator.

optimizable

A predicate is optimizable if it provides a starting or stopping point and allows use
of an index. Optimizable predicates use only simple column references and =, <,
>, +, >=, and IS NULL operators. For complete details, see What's optimizable?. A
synonym for optimizable is indexable.

predicate

A WHERE clause contains boolean expressions that can be linked together by
AND or OR clauses. Each part is called a predicate. For example: WHERE c1 =2
AND c2 = 5 contains two predicates.

sargable

Sargable predicates are a superset of optimizable predicates; not all sargable
predicates are optimizable, because sargable predicates also include the <>
operator. (Sarg stands for "search argument.") Predicates that are sargable but not
optimizable nevertheless improve performance and allow the optimizer to use more
accurate costing information.

In addition, sargable predicates can be pushed down (see Predicates pushed into
views or derived tables).

simple column reference

A reference to a column that is not part of an expression. For example, c1 is a
simple column reference, but c1+1,max(c1), and lower(c1) are not.

Predicate transformations
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WHERE clauses with predicates joined by OR are usually not optimizable. WHERE
clauses with predicates joined by AND are optimizable if at least one of the predicates is
optimizable. For example:

SELECT * FROM Flights
WHERE flight_id = 'AA1111'
AND segment_number <> 2

In this example, the first predicate is optimizable; the second predicate is not. Therefore,
the statement is optimizable.
Note:  In a few cases, a WHERE clause with predicates joined by OR can be
transformed into an optimizable statement. See OR transformations.

Derby can transform some predicates internally so that at least one of the predicates is
optimizable and thus the statement is optimizable. This section describes the predicate
transformations that Derby performs to make predicates optimizable.

A predicate that uses the following comparison operators can sometimes be transformed
internally into optimizable predicates.

BETWEEN transformations

A BETWEEN predicate is transformed into equivalent predicates that use the >= and <=
operators, which are optimizable. For example:

flight_date BETWEEN DATE('2005-04-01') and DATE('2005-04-10')

is transformed into

flight_date >= DATE('2005-04-01')
AND flight_date >= '2005-04-10'

LIKE transformations

This section describes using LIKE transformations as a comparison operator.

Note:  LIKE transformations and optimizations are disabled when you use territory-based
collation. See "Character-based collation in Derby" in the Java DB Developer's Guide for
information about territory-based collation.
Character string beginning with constant

A LIKE predicate in which a column is compared to a character string that begins with a
character constant (not a wildcard) is transformed into three predicates: one predicate
that uses the LIKE operator, one that uses the >= operator, and one that uses the <
operator. For example:

country LIKE 'Ch%i%'

becomes

country LIKE 'Ch%i%'
AND country >= 'Ch'
AND country < 'Ci'

The first (LIKE) predicate is not optimizable, but the new predicates added by the
transformation are.

When the character string begins with one more character constants and ends with a
single "%", the first LIKE clause is eliminated. For example:

country LIKE 'Ch%'
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becomes

country >= 'Ch'
AND country < 'Ci'

Character string without wildcards

A LIKE predicate is transformed into a predicate that uses the = operator (and a NOT
LIKE predicate is transformed into one that uses <>) when the character string does not
contain any wildcards. For example:

country LIKE 'Chile'

becomes

country = 'Chile'

and

country NOT LIKE 'Chile'

becomes

country <> 'Chile'

Predicates that use the = operator are optimizable. Predicates that use the <> operator
are sargable.

Unknown parameter

'The situation is similar to those described above when a column is compared using the
LIKE operator to a parameter whose value is unknown in advance (dynamic parameter,
join column, etc.).

In this situation, the LIKE predicate is likewise transformed into three predicates: one
LIKE predicate, one predicate using the >= operator, and one predicate using the <
operator. For example:

country LIKE ?

is transformed into

country LIKE ?
AND country >= InternallyGeneratedParameter
AND country < InternallyGeneratedParameter

where the InternallyGeneratedParameters are calculated at the beginning of execution
based on the value of the parameter.
Note:  This transformation can lead to a bad plan if the user passes in a string that
begins with a wildcard or a nonselective string as the parameter. Users can work around
this possibility by writing the query like this (which is not optimizable):

(country || '') LIKE ?

Simple IN predicate transformations

A simple IN list predicate is a predicate where the left operand is a simple column
reference and the IN list is composed entirely of constants or parameter markers. The
following are examples of simple IN predicates:

    orig_airport IN ('ABQ', 'AKL', 'DSM')

    orig_airport IN (?, ?, ?)



Tuning Java DB

51

    orig_airport IN ('ABQ', ?, ?, 'YYZ') 

Probe predicates

Derby transforms each IN list predicate into an equality predicate whose right operand is
a parameter marker that is created internally. This internal equality predicate is called a
probe predicate. Each of the above examples of simple IN predicates is transformed into
the following probe predicate:

    orig_airport = ?

Probe predicates are treated differently than normal equality predicates. Probe predicates
are processed in a special way during query optimization and execution.

During optimization, Derby analyzes the probe predicate to determine if the probe
predicate is useful for limiting the number of rows retrieved from disk. For a probe
predicate to be useful, both of the following requirements must be true:

1. There must be an index defined on the table that the column reference belongs
to, and the column reference must be the first column in the index. In the example
above, orig_airport is the column reference.

2. The estimated cost of an access path that uses the probe predicate and one of the
corresponding indexes must be less than the estimated cost of any other access
paths calculated by the optimizer. Typically, this means that the number of values in
the IN list is significantly fewer than the number of rows in the table that the column
reference belongs to.

If both of these requirements are met, Derby will use the probe predicate at query
execution to probe the underlying index for values in the IN list. In other words, the right
operand of the probe predicate (the parameter) becomes a place-holder into which Derby
plugs the different values from the IN list. Then for each value, Derby reads the matching
rows from the index.

If either of the two requirements is not satisfied, Derby discards the internal probe
predicate and executes the query using the original IN list predicate.

Examples

The following query is submitted to Derby:

SELECT flights.orig_airport, cities.city_name 
    FROM flights, cities
    WHERE flights.orig_airport IN ('ABQ', 'DSM', 'YYZ')
        AND flights.orig_airport = cities.airport   

The Derby optimizer transforms this query internally into:

SELECT flights.orig_airport, cities.city_name
    FROM flights, cities
    WHERE flights.orig_airport = ?
        AND flights.orig_airport = cities.airport   

In this transformed query flights.orig_airport = ? is an internal probe predicate.

There is an index on the org_airport column in the flights table. If the estimated
cost of probing that index for the three values (ABQ, DSM, YYZ) is less than the cost of
accessing the flights table in some other way, Derby will perform probing on the index
at query execution. This approach ensures that Derby reads only the necessary rows
from the Derby table.

At a higher level, the approach by Derby to use index probing for IN lists is an internal
way of evaluating the transformed predicate multiple times. The predicate is evaluated
one time for each value in the IN list.
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From a JDBC perspective, Derby is logically (but not actually) performing the following
statements and then combining the three result sets (rs1, rs2, and rs3) :

PreparedStatement ps = conn.prepareStatement(
    "select flights.orig_airport, cities.city_name " +
    "from flights, cities " +
    "where flights.orig_airport = ? " +
        "and flights.orig_airport = cities.airport ");

ps.setString(1, "ABQ");
rs1 = ps.executeQuery();

ps.setString(1, "DSM");
rs2 = ps.executeQuery();

ps.setString(1, "YYZ");
rs3 = ps.executeQuery();

From an SQL perspective, Derby is logically (but not actually) performing the following
statement:

SELECT flights.orig_airport, cities.city_name
    FROM flights, cities
    WHERE flights.orig_airport = 'ABQ'
        AND flights.orig_airport = cities.airport

UNION ALL

SELECT flights.orig_airport, cities.city_name
    FROM flights, cities
    WHERE flights.orig_airport = 'DSM'
        AND flights.orig_airport = cities.airport

UNION ALL

SELECT flights.orig_airport, cities.city_name
    FROM flights, cities
    WHERE flights.orig_airport = 'YYZ'
        AND flights.orig_airport = cities.airport
    

In the above SQL example, for each subquery the equality predicate limits the number
of rows read from the flights table so that the process avoids having to read
unnecessary rows from disk.

The larger the flights table, the more time Derby will save by probing the index for the
relatively few IN list values.

By using probe predicates, regardless of how large the base table is, Derby only has
to probe the index a maximum of N times, where N is the size of the IN list. If N is
significantly less than the number of rows in the table, or is significantly less than the
number of rows between the minimum value and the maximum value in the IN list,
selective probing ensures that Derby does not spend time reading unnecessary rows
from disk.

NOT IN predicate transformations

NOT IN lists are transformed into multiple predicates that use the <> operator.
<> predicates are not optimizable, but they are sargable (See Internal language
transformations). For example:

orig_airport NOT IN ('ABQ', 'AKL', 'DSM')

becomes
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orig_airport <> 'ABQ'
AND orig_airport <> 'AKL'
AND orig_airport <> 'DSM'

In addition, large lists are sorted in ascending order for performance reasons.

OR transformations

If all the OR predicates in a WHERE clause are of the form

simple column reference = Expression

where the columnReference is the same for all predicates in the OR chain, Derby
transforms the OR chain into an IN list of the following form:

simple column reference IN (Expression1, Expression2, ..., ExpressionN)

The new predicate might be optimizable.

For example, Derby can transform the following statement:

SELECT * FROM Flights
WHERE flight_id = 'AA1111'
OR flight_id = 'US5555'
OR flight_id = ?

into this one:

SELECT * FROM Flights
WHERE flight_id IN ('AA1111', 'US5555', ?)

If this transformed IN list is a static IN list, Derby also performs the static IN list
transformation (see Simple IN predicate transformations).

Transitive closure
The transitive property of numbers states that if A = B and B = C, then A = C.

Derby applies this property to query predicates to add additional predicates to the query
in order to give the optimizer more information. This process is called transitive closure.
There are two types of transitive closure:

• Transitive closure on join clauses

Applied first, if applicable
• Transitive closure on search clauses

Transitive closure on join clauses

When a join statement selects from three or more tables, Derby analyzes any equijoin
predicates between simple column references within each query block and adds
additional equijoin predicates where possible if they do not currently exist. For example,
Derby transforms the following query:

SELECT * FROM samp.employee e, samp.emp_act a, samp.emp_resume r
WHERE e.empno = a.empno
and a.empno = r.empno

into the following:

SELECT * FROM samp.employee e, samp.emp_act a, samp.emp_resume r
WHERE e.empno = a.empno
and a.empno = r.empno
and e.empno = r.empno
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On the other hand, the optimizer knows that one of these equijoin predicates is redundant
and will throw out the one that is least useful for optimization.

Transitive Closure on Search Clauses

Derby applies transitive closure on search clauses after transitive closure on join clauses.
For each sargable predicate where a simple column reference is compared with a
constant (or the IS NULL and IS NOT NULL operators), Derby looks for an equijoin
predicate between the simple column reference and a simple column reference from
another table in the same query block. For each such equijoin predicate, Derby then
searches for a similar comparison (the same operator) between the column from the
other table and the same constant. Derby adds a new predicate if no such predicate is
found.

Derby performs all other possible transformations on the predicates (described in
Predicate transformations) before applying transitive closure on search clauses.

For example, given the following statement:

SELECT * FROM Flights, FlightAvailability
WHERE Flights.flight_id = FlightAvailability.flight_id
AND Flights.flight_id between 'AA1100' and 'AA1250'
AND Flights.flight_id <> 'AA1219'
AND FlightAvailability.flight_id <> 'AA1271' 

Derby first performs any other transformations:
• the BETWEEN transformation on the second predicate:

AND Flights.flight_id >= 'AA1100' 
AND Flights.flight_id <=  'AA1250'

Derby then performs the transitive closure:

SELECT * FROM Flights, FlightAvailability
WHERE Flights.flight_id = FlightAvailability.flight_id
AND Flights.flight_id >= 'AA1100' 
AND Flights.flight_id <=  'AA1250'
AND Flights.flight_id <> 'AA1219'
AND Flights.flight_id <> 'AA1271'
AND FlightAvailability.flight_id >= 'AA1100' 
AND FlightAvailability.flight_id <=  'AA1250'
AND FlightAvailability.flight_id <> 'AA1271'
AND FlightAvailability.flight_id <> 'AA1219'

When a sargable predicate uses the = operator, Derby can remove all equijoin predicates
comparing that column reference to another simple column reference from the same
query block as part of applying transitive closure, because the equijoin predicate is now
redundant, whether or not a new predicate was added. For example:

SELECT * FROM Flights, Flightavailability
WHERE Flights.flight_id = Flightavailability.flight_id
AND Flightavailability.flight_id = 'AA1122'

becomes (and is equivalent to)

SELECT * FROM Flights, Flightavailability
WHERE Flights.flight_id = 'AA1122'
AND Flightavailability.flight_id = 'AA1122'

The elimination of redundant predicates gives the optimizer more accurate selectivity
information and improves performance at execution time.
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View transformations
When Derby evaluates a statement that references a view, it transforms the reference
to a view into a derived table. It might make additional transformations to improve
performance.

View flattening

When evaluating a statement that references a view, Derby internally transforms a view
into a derived table. This derived table might also be a candidate for flattening into the
outer query block.

A view or derived table can be flattened into the outer query block if all of the following
conditions are met:

• The select list is composed entirely of simple column references and constants.
• There is no GROUP BY clause in the view.
• There is no DISTINCT in the view.

For example, given view v1(a,b):

SELECT Cities.city_name, Countries.country_iso_code
FROM Cities, Countries
WHERE Cities.country_iso_code = Countries.country_iso_code

and a SELECT that references it:

SELECT a, b
FROM v1 WHERE a = 'Melbourne'

after the view is transformed into a derived table, the internal query is

SELECT a, b
FROM (select Cities.city_name, Countries.country_iso_code
FROM Cities, Countries
WHERE Cities.country_iso_code = Countries.country_iso_code) v1(a, b)
WHERE a = 'Melbourne'

After view flattening it becomes

SELECT Cities.city_name, Countries.country_iso_code
FROM Cities, Countries
WHERE Cities.country_iso_code = Countries.country_iso_code
AND Cities.city_name = 'Melbourne'

Predicates pushed into views or derived tables
An SQL statement that references a view can also include a predicate. Consider the view
v2 (a,b):

CREATE VIEW v2(a,b) AS
SELECT sales_person, MAX(sales)
FROM Sales
GROUP BY sales_person

The following statement references the view and includes a predicate:

SELECT *
FROM v2
WHERE a = 'LUCCHESSI'

When Derby transforms that statement by first transforming the view into a derived table,
it places the predicate at the top level of the new query, outside the scope of the derived
table:
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SELECT a, b 
FROM (SELECT sales_person, MAX(sales) 
   FROM Sales 
   WHERE sales_person = 'LUCCHESSI' 
   GROUP BY sales_person) 
   v1(a, b)

In the example in the preceding section (see View flattening), Derby was able to flatten
the derived table into the main SELECT, so the predicate in the outer SELECT could be
evaluated at a useful point in the query. This is not possible in this example, because the
underlying view does not satisfy all the requirements of view flattening.

However, if the source of all of the column references in a predicate is a simple column
reference in the underlying view or table, Derby is able to push the predicate down
to the underlying view. Pushing down means that the qualification described by the
predicate can be evaluated when the view is being evaluated. In our example, the column
reference in the outer predicate, a, in the underlying view is a simple column reference
to the underlying base table. So the final transformation of this statement after predicate
pushdown is:

SELECT a, b 
FROM (SELECT sales_person, MAX(sales) from Sales 
WHERE sales_person = 'LUCCHESSI' 
GROUP BY sales_person) v1(a, b)

Without the transformation, Derby would have to scan the entire table t1 to form all the
groups, only to throw out all but one of the groups. With the transformation, Derby is able
to make that qualification part of the derived table.

If there were a predicate that referenced column b, it could not be pushed down, because
in the underlying view, column b is not a simple column reference.

Predicate pushdown transformation includes predicates that reference multiple tables
from an underlying join.

Subquery processing and transformations
Subqueries are notoriously expensive to evaluate. This section describes some of the
transformations that Derby makes internally to reduce the cost of evaluating them.

Materialization

Materialization means that a subquery is evaluated only once. There are several types of
subqueries that can be materialized.

Expression subqueries that are not correlated

A subquery can be materialized if it is a noncorrelated expression subquery. A correlated
subquery is one that references columns in the outer query, and so has to be evaluated
for each row in the outer query.

For example:

SELECT * FROM Staff WHERE id = (SELECT MAX(manager) FROM Org)

In this statement, the subquery needs to be evaluated only once.

This type of subquery must return only one row. If evaluating the subquery causes a
cardinality violation (if it returns more than one row), an exception is thrown when the
subquery is run.
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Subquery materialization is detected before optimization, which allows the Derby
optimizer to see a materialized subquery as an unknown constant value. The comparison
is therefore optimizable.

The original statement is transformed into the following two statements:

constant = SELECT MAX(manager) FROM Org
SELECT * FROM Staff
WHERE id = constant

The second statement is optimizable.

Subqueries that cannot be flattened

Materialization of a subquery can also occur when the subquery is nonflattenable and
there is an equijoin between the subquery and another FROM table in the query.

For example:

SELECT i, a  FROM t1, 
   (SELECT DISTINCT a FROM T2) x1  
WHERE t1.i = x1.a AND t1.i in (1, 3, 5, 7) 

In this example, the subquery x1 is noncorrelated because it does not reference any
of the columns from the outer query. The subquery is nonflattenable because of the
DISTINCT keyword. Derby does not flatten DISTINCT subqueries. This subquery is
eligible for materialization. Since there is an equijoin predicate between the subquery
x1 and the table t1 (namely, t1.i = x1.a), the Derby optimizer will consider performing a
hash join between t1 and x1 (with x1 as the inner operand). If that approach yields the
best cost, Derby materializes the subquery x1 to perform the hash join. The subquery is
evaluated only a single time and the results are stored in an in-memory hash table. Derby
then executes the join using the in-memory result set for x1.

Flattening a subquery into a normal join

Subqueries are allowed to return more than one row when used with IN, EXISTS, and
ANY. However, for each row returned in the outer row, Derby evaluates the subquery
until it returns one row; it does not evaluate the subquery for all rows returned.

For example, given two tables, t1 and t2:

c1

1

2

3

c1

2

2

1

and the following query:

SELECT c1 FROM t1 WHERE c1 IN (SELECT c1 FROM t2)

the results would be
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1
2

Simply selecting t1.c1 when simply joining those tables has different results:

SELECT t1.c1 FROM t1, t2 WHERE t1.c1 = t2.c1
   1
   2
   2

Statements that include such subqueries can be flattened into joins only if the subquery
does not introduce any duplicates into the result set (in our example, the subquery
introduced a duplicate and so cannot simply be flattened into a join). If this requirement
and other requirements (listed below) are met, however, the statement is flattened such
that the tables in the subquery's FROM list are treated as if they were inner to the tables
in the outer FROM list.

For example, the query could have been flattened into a join if c1 in t2 had a unique index
on it. It would not have introduced any duplicate values into the result set.

The requirements for flattening into a normal join are:
• The subquery is not under an OR.
• The subquery type is EXISTS, IN, or ANY, or it is an expression subquery on the

right side of a comparison operator.
• The subquery is not in the SELECT list of the outer query block.
• There are no aggregates in the SELECT list of the subquery.
• The subquery does not have a GROUP BY clause.
• There is a uniqueness condition that ensures that the subquery does not introduce

any duplicates if it is flattened into the outer query block.
• Each table in the subquery's FROM list (after any view, derived table, or subquery

flattening) must be a base table.
• If there is a WHERE clause in the subquery, there is at least one table in the

subquery whose columns are in equality predicates with expressions that do not
include any column references from the subquery block. These columns must be a
superset of the key columns for any unique index on the table. For all other tables
in the subquery, the columns in equality predicates with expressions that do not
include columns from the same table are a superset of the unique columns for any
unique index on the table.

Flattening into a normal join gives the optimizer more options for choosing the best query
plan. For example, if the following statement:

SELECT huge.* FROM huge
WHERE c1 IN (SELECT c1 FROM tiny)

can be flattened into

SELECT huge.* FROM huge, tiny WHERE huge.c1 = tiny.c1

the optimizer can choose a query plan that will scan tiny and do a few probes into the
huge table instead of scanning the huge table and doing a large number of probes into
the tiny table.

Here is an expansion of the example used earlier in this section. Given

CREATE TABLE t1 (c1 INT)
CREATE TABLE t2 (c1 INT NOT NULL PRIMARY KEY)
CREATE TABLE t3 (c1 INT NOT NULL PRIMARY KEY)
INSERT INTO t1 VALUES (1), (2), (3)
INSERT INTO t2 VALUES (1), (2), (3)
INSERT INTO t3 VALUES (2), (3), (4)

this query
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SELECT t1.* FROM t1 WHERE t1.c1 IN 
    (SELECT t2.c1 FROM t2, t3 WHERE t2.c1 = t3.c1)

should return the following results:

2
3

The query satisfies all the requirements for flattening into a join, and the statement can
be transformed into the following one:

SELECT t1.*
FROM t1, t2, t3
WHERE t1.c1 = t2.c1
AND t2.c1 = t3.c1
AND t1.c1 = t3.c1

The following query:

SELECT t1.*
FROM t1 WHERE EXISTS
(SELECT * FROM t2, t3 WHERE t2.c1 = t3.c1 AND t2.c1 = t1.c1)

can be transformed into

SELECT t1.*
FROM t1, t2, t3
WHERE t1.c1 = t2.c1
AND t2.c1 = t3.c1
AND t1.c1 = t3.c1

Flattening a subquery into an EXISTS join

An EXISTS join is a join in which the right side of the join needs to be probed only once
for each outer row. Using such a definition, an EXISTS join does not literally use the
EXISTS keyword. Derby treats a statement as an EXISTS join when there will be at most
one matching row from the right side of the join for a given row in the outer table.

A subquery that cannot be flattened into a normal join because of a uniqueness condition
can be flattened into an EXISTS join if it meets all the requirements (see below). Recall
the first example from the previous section (Flattening a subquery into a normal join):

SELECT c1 FROM t1 WHERE c1 IN (SELECT c1 FROM t2)

This query could not be flattened into a normal join because such a join would return the
wrong results. However, this query can be flattened into a join recognized internally by
the Derby system as an EXISTS join. When processing an EXISTS join, Derby knows to
stop processing the right side of the join after a single row is returned. The transformed
statement would look something like this:

SELECT c1 FROM t1, t2
WHERE t1.c1 = t2.c1
EXISTS JOIN INTERNAL SYNTAX

Requirements for flattening into an EXISTS join:
• The subquery is not under an OR.
• The subquery type is EXISTS, IN, or ANY.
• The subquery is not in the SELECT list of the outer query block.
• There are no aggregates in the SELECT list of the subquery.
• The subquery does not have a GROUP BY clause.
• The subquery has a single entry in its FROM list that is a base table.
• None of the predicates in the subquery, including the additional one formed

between the left side of the subquery operator and the column in the subquery's
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SELECT list (for IN or ANY subqueries), include any subqueries, method calls, or
field accesses.

When a subquery is flattened into an EXISTS join, the table from the subquery is made
join-order-dependent on all the tables with which it is correlated. This means that a table
must appear inner to all the tables on which it is join-order-dependent. (In subsequent
releases this restrictions can be relaxed.) For example:

SELECT t1.* FROM t1, t2
WHERE EXISTS (SELECT * FROM t3 WHERE t1.c1 = t3.c1)

gets flattened into

SELECT t1.* FROM t1, t2, t3 WHERE t1.c1 = t3.c1

where t3 is join order dependent on t1. This means that the possible join orders are (t1,
t2, t3), (t1, t3, t2), and (t2, t1, t3).

Flattening VALUES subqueries

Derby flattens VALUES subqueries to improve performance.

DISTINCT elimination in IN, ANY, and EXISTS subqueries
An IN, ANY, or EXISTS subquery evaluates to true if there is at least one row that causes
the subquery to evaluate to true. These semantics make a DISTINCT within an IN, ANY,
or EXISTS subquery unnecessary. The following two queries are equivalent and the first
is transformed into the second:

SELECT * FROM t1 WHERE c1 IN
    (SELECT DISTINCT c2 FROM t2 WHERE t1.c3 = t2.c4)

SELECT * FROM t1 WHERE c1 IN
    (SELECT c2 FROM t2 WHERE t1.c3 = t2.c4)

IN/ANY subquery transformation
An IN or ANY subquery that is guaranteed to return at most one row can be transformed
into an equivalent expression subquery (a scalar subquery without the IN or ANY). The
subquery must not be correlated. Subqueries guaranteed to return at most one row are:

• Simple VALUES clauses
• SELECTs returning a non-grouped aggregate

For example:

WHERE C1 IN (SELECT MIN(c1) FROM T)

can be transformed into

WHERE C1 = (SELECT MIN(c1) FROM T)

This transformation is considered before subquery materialization. If the transformation
is performed, the subquery becomes materializable. In the example, if the IN subquery
were not transformed, it would be evaluated anew for each row.

The subquery type transformation is shown in IN or ANY Subquery Transformations for
Subqueries Returning a Single Row:
Table 3. IN or ANY Subquery Transformations for Subqueries Returning a Single
Row
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Before Transformation After Transformation

c1 IN (SELECT ...) c1 = (SELECT ...)

c1 = ANY (SELECT ...) c1 = (SELECT ...)

c1 <> ANY (SELECT ...) c1 <> (SELECT ...)

c1 > ANY (SELECT ...) c1 > (SELECT ...)

c1 >= ANY (SELECT ...) c1 >= (SELECT ...)

c1 < ANY (SELECT ...) c1 < (SELECT ...)

c1 <= ANY (SELECT ...) c1 <= (SELECT ...)

Outer join transformations
Derby transforms OUTER to INNER joins when the predicate filters out all nulls on the
join column. This transformation can allow more potential query plans and thus better
performance.

Sort avoidance
Sorting is an expensive process. Derby tries to eliminate unnecessary sorting steps
where possible.

DISTINCT elimination based on a uniqueness condition

A DISTINCT (and the corresponding sort) can be eliminated from a query if a uniqueness
condition exists that ensures that no duplicate values will be returned. If no duplicate
values are returned, the DISTINCT node is superfluous, and Derby transforms the
statement internally into one without the DISTINCT keyword.

The requirements are:
• No GROUP BY list.
• SELECT list contains at least one simple column reference.
• Every simple column reference is from the same table.
• Every table in the FROM list is a base table.
• Primary table

There is at least one unique index on one table in the FROM list for which all the
columns appear in one of the following:

• equality predicates with expressions that do not include any column
references

• simple column references in the SELECT list
• Secondary table(s)

All the other tables in the FROM list also have at least one unique index for which
all the columns appear in one of the following:

• equality predicates with expressions that do not include columns from the
same table

• simple column references in the SELECT list

For example:

CREATE TABLE tab1 (c1 INT NOT NULL, 
    c2 INT NOT NULL, 
    c3 INT NOT NULL, 
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    c4 CHAR(2), 
    PRIMARY KEY (c1, c2, c3))
CREATE TABLE tab2 (c1 INT NOT NULL,  
    c2 INT NOT NULL, 
    PRIMARY KEY (c1, c2))
INSERT INTO tab1 VALUES (1, 2, 3, 'WA'), 
    (1, 2, 5, 'WA'), 
    (1, 2, 4, 'CA'), 
    (1, 3, 5, 'CA'), 
    (2, 3, 1, 'CA')
INSERT INTO tab2 VALUES (1, 2), 
    (1, 3), 
    (2, 2), 
    (2, 3)
-- all the columns in the index on the only table (tab1) appear
-- in the way required for the Primary table (simple column references)
SELECT DISTINCT c1, c2, c3, c4
FROM tab1
-- all the columns in the index on the only table (tab1) appear
-- in the way required for the Primary table (equality predicates) 
SELECT DISTINCT c3, c4
FROM tab1
WHERE c1 = 1
AND c2 = 2
AND c4 = 'WA'
-- all the columns in the index on tab1 appear
-- in the way required for the Primary table,
-- and all the columns in the
-- other tables appear in the way required
-- for a Secondary table
SELECT DISTINCT tab1.c1, tab1.c3, tab1.c4
FROM tab1, tab2
WHERE tab1.c2 = 2
AND tab2.c2 = tab1.c2
AND tab2.c1 = tab1.c1

Combining ORDER BY and DISTINCT
Without a transformation, a statement that contains both DISTINCT and ORDER BY
would require two separate sorting steps-one to satisfy DISTINCT and one to satisfy
ORDER BY. (Currently, Derby uses sorting to evaluate DISTINCT. There are, in theory,
other ways to accomplish this.) In some situations, Derby can transform the statement
internally into one that contains only one of these keywords. The requirements are:

• The columns in the ORDER BY list must be a subset of the columns in the SELECT
list.

• All the columns in the ORDER BY list are sorted in ascending order.

A unique index is not required.

For example:

SELECT DISTINCT miles, meal
FROM Flights
ORDER BY meal

is transformed into

SELECT DISTINCT miles, meal
FROM Flights

Note that these are not equivalent functions; this is simply an internal Derby
transformation.

Combining ORDER BY and UNION
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Without a transformation, a statement that contains both ORDER BY and UNION would
require two separate sorting steps-one to satisfy ORDER BY and one to satisfy UNION
(Currently Derby uses sorting to eliminate duplicates from a UNION. You can use UNION
ALL to avoid sorting, but UNION ALL will return duplicates. So you only use UNION ALL
to avoid sorting if you know that there are no duplicate rows in the tables).

In some situations, Derby can transform the statement internally into one that contains
only one of these keywords (the ORDER BY is thrown out). The requirements are:

• The columns in the ORDER BY list must be a subset of the columns in the select
list of the left side of the union.

• All the columns in the ORDER BY list must be sorted in ascending order and they
must be an in-order prefix of the columns in the target list of the left side of the
UNION.

Derby will be able to transform the following statements:

SELECT miles, meal
FROM Flights
UNION VALUES (1000, 'D')
ORDER BY 1

Derby cannot avoid two sorting nodes in the following statement, because of the order of
the columns in the ORDER BY clause:

SELECT flight_id, segment_number FROM Flights
UNION
SELECT flight_id, segment_number FROM FlightAvailability
ORDER BY segment_number , flight_id

Aggregate processing

COUNT(nonNullableColumn)

Derby transforms COUNT(nonNullableColumn) into COUNT(*). This improves
performance by potentially reducing the number of referenced columns in the table (each
referenced column needs to be read in for each row) and by giving the optimizer more
access path choices. For example, the cheapest access path for

SELECT COUNT(*) FROM t1

is the index on t1 with the smallest number of leaf pages, and the optimizer is free to
choose that path.
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Trademarks

The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.
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